Parametrized higher category theory
Algebraic and Geometric Topology, Tome 23 (2023) no. 2, pp. 509-644

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We develop foundations for the theory of ∞–categories parametrized by a base ∞–category. Our main contribution is a theory of indexed homotopy limits and colimits, which specializes to a theory of G–colimits for G a finite group when the base is chosen to be the orbit category of G. We apply this theory to show that the G–∞–category of G–spaces is freely generated under G–colimits by the contractible G–space, thereby affirming a conjecture of Mike Hill.

DOI : 10.2140/agt.2023.23.509
Classification : 55U35, 55U40, 55U10
Keywords: parametrized higher category theory, equivariant homotopy theory

Shah, Jay 1

1 Department of Mathematics and Computer Science, University of Münster, Münster, Germany
@article{10_2140_agt_2023_23_509,
     author = {Shah, Jay},
     title = {Parametrized higher category theory},
     journal = {Algebraic and Geometric Topology},
     pages = {509--644},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2023},
     doi = {10.2140/agt.2023.23.509},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.509/}
}
TY  - JOUR
AU  - Shah, Jay
TI  - Parametrized higher category theory
JO  - Algebraic and Geometric Topology
PY  - 2023
SP  - 509
EP  - 644
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.509/
DO  - 10.2140/agt.2023.23.509
ID  - 10_2140_agt_2023_23_509
ER  - 
%0 Journal Article
%A Shah, Jay
%T Parametrized higher category theory
%J Algebraic and Geometric Topology
%D 2023
%P 509-644
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.509/
%R 10.2140/agt.2023.23.509
%F 10_2140_agt_2023_23_509
Shah, Jay. Parametrized higher category theory. Algebraic and Geometric Topology, Tome 23 (2023) no. 2, pp. 509-644. doi: 10.2140/agt.2023.23.509

Cité par Sources :