Suspension homotopy of 6–manifolds
    
    
  
  
  
      
      
      
        
Algebraic and Geometric Topology, Tome 23 (2023) no. 1, pp. 439-460
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For a simply connected closed orientable manifold of dimension 6, we compute its homotopy decomposition after double suspension. This allows us to determine its K– and KO–groups easily. Moreover, in a special case we refine the decomposition to show the rigidity property of the manifold after double suspension.
                  
                    
                    
                    
                    
                    
                      
Keywords: 
                $6$–manifolds, homotopy decomposition, loop spaces,
                coformal spaces, homotopy groups, Poincaré duality space,
                $K$–groups
              
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Huang, Ruizhi 1
@article{10_2140_agt_2023_23_439,
     author = {Huang, Ruizhi},
     title = {Suspension homotopy of 6{\textendash}manifolds},
     journal = {Algebraic and Geometric Topology},
     pages = {439--460},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     doi = {10.2140/agt.2023.23.439},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.439/}
}
                      
                      
                    Huang, Ruizhi. Suspension homotopy of 6–manifolds. Algebraic and Geometric Topology, Tome 23 (2023) no. 1, pp. 439-460. doi: 10.2140/agt.2023.23.439
Cité par Sources :
