Suspension homotopy of 6–manifolds
Algebraic and Geometric Topology, Tome 23 (2023) no. 1, pp. 439-460

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For a simply connected closed orientable manifold of dimension 6, we compute its homotopy decomposition after double suspension. This allows us to determine its K– and KO–groups easily. Moreover, in a special case we refine the decomposition to show the rigidity property of the manifold after double suspension.

DOI : 10.2140/agt.2023.23.439
Keywords: $6$–manifolds, homotopy decomposition, loop spaces, coformal spaces, homotopy groups, Poincaré duality space, $K$–groups

Huang, Ruizhi 1

1 Institute of Mathematics, Chinese Academy of Sciences, Beijing, China
@article{10_2140_agt_2023_23_439,
     author = {Huang, Ruizhi},
     title = {Suspension homotopy of 6{\textendash}manifolds},
     journal = {Algebraic and Geometric Topology},
     pages = {439--460},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2023},
     doi = {10.2140/agt.2023.23.439},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.439/}
}
TY  - JOUR
AU  - Huang, Ruizhi
TI  - Suspension homotopy of 6–manifolds
JO  - Algebraic and Geometric Topology
PY  - 2023
SP  - 439
EP  - 460
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.439/
DO  - 10.2140/agt.2023.23.439
ID  - 10_2140_agt_2023_23_439
ER  - 
%0 Journal Article
%A Huang, Ruizhi
%T Suspension homotopy of 6–manifolds
%J Algebraic and Geometric Topology
%D 2023
%P 439-460
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.439/
%R 10.2140/agt.2023.23.439
%F 10_2140_agt_2023_23_439
Huang, Ruizhi. Suspension homotopy of 6–manifolds. Algebraic and Geometric Topology, Tome 23 (2023) no. 1, pp. 439-460. doi: 10.2140/agt.2023.23.439

Cité par Sources :