Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that smooth 1–dimensional topological field theories over a manifold are equivalent to vector bundles with connection. The main novelty is our definition of the smooth 1–dimensional bordism category, which encodes cutting laws rather than gluing laws. We make this idea precise through a smooth version of Rezk’s complete Segal spaces. With such a definition in hand, we analyze the category of field theories using a combination of descent, a smooth version of the 1–dimensional cobordism hypothesis, and standard differential-geometric arguments.
Berwick-Evans, Daniel 1 ; Pavlov, Dmitri 2
@article{10_2140_agt_2023_23_3707,
     author = {Berwick-Evans, Daniel and Pavlov, Dmitri},
     title = {Smooth one-dimensional topological field theories are vector bundles with connection},
     journal = {Algebraic and Geometric Topology},
     pages = {3707--3743},
     publisher = {mathdoc},
     volume = {23},
     number = {8},
     year = {2023},
     doi = {10.2140/agt.2023.23.3707},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3707/}
}
                      
                      
                    TY - JOUR AU - Berwick-Evans, Daniel AU - Pavlov, Dmitri TI - Smooth one-dimensional topological field theories are vector bundles with connection JO - Algebraic and Geometric Topology PY - 2023 SP - 3707 EP - 3743 VL - 23 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3707/ DO - 10.2140/agt.2023.23.3707 ID - 10_2140_agt_2023_23_3707 ER -
%0 Journal Article %A Berwick-Evans, Daniel %A Pavlov, Dmitri %T Smooth one-dimensional topological field theories are vector bundles with connection %J Algebraic and Geometric Topology %D 2023 %P 3707-3743 %V 23 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3707/ %R 10.2140/agt.2023.23.3707 %F 10_2140_agt_2023_23_3707
Berwick-Evans, Daniel; Pavlov, Dmitri. Smooth one-dimensional topological field theories are vector bundles with connection. Algebraic and Geometric Topology, Tome 23 (2023) no. 8, pp. 3707-3743. doi: 10.2140/agt.2023.23.3707
Cité par Sources :
