Asymptotic dimension of graphs of groups and one-relator groups
Algebraic and Geometric Topology, Tome 23 (2023) no. 8, pp. 3587-3613

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove a new inequality for the asymptotic dimension of HNN-extensions. We deduce that the asymptotic dimension of every finitely generated one-relator group is at most two, confirming a conjecture of A Dranishnikov. As corollaries we calculate the exact asymptotic dimension of right-angled Artin groups and we give a new upper bound for the asymptotic dimension of fundamental groups of graphs of groups.

DOI : 10.2140/agt.2023.23.3587
Keywords: asymptotic dimension, one-relator groups, graph of groups, RAAGs, geometric group theory

Tselekidis, Panagiotis 1

1 Mathematical Institute, University of Oxford, Oxford, United Kingdom
@article{10_2140_agt_2023_23_3587,
     author = {Tselekidis, Panagiotis},
     title = {Asymptotic dimension of graphs of groups and one-relator groups},
     journal = {Algebraic and Geometric Topology},
     pages = {3587--3613},
     publisher = {mathdoc},
     volume = {23},
     number = {8},
     year = {2023},
     doi = {10.2140/agt.2023.23.3587},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3587/}
}
TY  - JOUR
AU  - Tselekidis, Panagiotis
TI  - Asymptotic dimension of graphs of groups and one-relator groups
JO  - Algebraic and Geometric Topology
PY  - 2023
SP  - 3587
EP  - 3613
VL  - 23
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3587/
DO  - 10.2140/agt.2023.23.3587
ID  - 10_2140_agt_2023_23_3587
ER  - 
%0 Journal Article
%A Tselekidis, Panagiotis
%T Asymptotic dimension of graphs of groups and one-relator groups
%J Algebraic and Geometric Topology
%D 2023
%P 3587-3613
%V 23
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3587/
%R 10.2140/agt.2023.23.3587
%F 10_2140_agt_2023_23_3587
Tselekidis, Panagiotis. Asymptotic dimension of graphs of groups and one-relator groups. Algebraic and Geometric Topology, Tome 23 (2023) no. 8, pp. 3587-3613. doi: 10.2140/agt.2023.23.3587

Cité par Sources :