Milnor–Witt motivic cohomology of complements of hyperplane arrangements
Algebraic and Geometric Topology, Tome 23 (2023) no. 8, pp. 3531-3552

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We compute the (total) Milnor–Witt motivic cohomology of the complement of a hyperplane arrangement in an affine space as an algebra with given generators and relations. We also obtain some corollaries by realization to classical cohomology.

DOI : 10.2140/agt.2023.23.3531
Keywords: Milnor–Witt motivic cohomology, hyperplane arrangements, $I$–cohomology, real realization

Peng, Keyao 1

1 Institut Fourier, Université Grenoble Alpes, Grenoble, France
@article{10_2140_agt_2023_23_3531,
     author = {Peng, Keyao},
     title = {Milnor{\textendash}Witt motivic cohomology of complements of hyperplane arrangements},
     journal = {Algebraic and Geometric Topology},
     pages = {3531--3552},
     publisher = {mathdoc},
     volume = {23},
     number = {8},
     year = {2023},
     doi = {10.2140/agt.2023.23.3531},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3531/}
}
TY  - JOUR
AU  - Peng, Keyao
TI  - Milnor–Witt motivic cohomology of complements of hyperplane arrangements
JO  - Algebraic and Geometric Topology
PY  - 2023
SP  - 3531
EP  - 3552
VL  - 23
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3531/
DO  - 10.2140/agt.2023.23.3531
ID  - 10_2140_agt_2023_23_3531
ER  - 
%0 Journal Article
%A Peng, Keyao
%T Milnor–Witt motivic cohomology of complements of hyperplane arrangements
%J Algebraic and Geometric Topology
%D 2023
%P 3531-3552
%V 23
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3531/
%R 10.2140/agt.2023.23.3531
%F 10_2140_agt_2023_23_3531
Peng, Keyao. Milnor–Witt motivic cohomology of complements of hyperplane arrangements. Algebraic and Geometric Topology, Tome 23 (2023) no. 8, pp. 3531-3552. doi: 10.2140/agt.2023.23.3531

Cité par Sources :