Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In a previous article, we constructed a link invariant categorifying the Jones polynomial at a 2p th root of unity, where p is an odd prime. This categorification utilized an N = 2 specialization of a differential introduced by Cautis in an 𝔰𝔩N–link homology theory. Here we give a family of link homologies where the Cautis differential is specialized to a positive integer of the form N = kp + 2. When k is even, all these link homologies categorify the Jones polynomial evaluated at a 2p th root of unity, but they are distinct link invariants.
Qi, You 1 ; Sussan, Joshua 2
@article{10_2140_agt_2023_23_3357,
     author = {Qi, You and Sussan, Joshua},
     title = {On some p{\textendash}differential graded link homologies, {II}},
     journal = {Algebraic and Geometric Topology},
     pages = {3357--3394},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2023},
     doi = {10.2140/agt.2023.23.3357},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3357/}
}
                      
                      
                    TY - JOUR AU - Qi, You AU - Sussan, Joshua TI - On some p–differential graded link homologies, II JO - Algebraic and Geometric Topology PY - 2023 SP - 3357 EP - 3394 VL - 23 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3357/ DO - 10.2140/agt.2023.23.3357 ID - 10_2140_agt_2023_23_3357 ER -
%0 Journal Article %A Qi, You %A Sussan, Joshua %T On some p–differential graded link homologies, II %J Algebraic and Geometric Topology %D 2023 %P 3357-3394 %V 23 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3357/ %R 10.2140/agt.2023.23.3357 %F 10_2140_agt_2023_23_3357
Qi, You; Sussan, Joshua. On some p–differential graded link homologies, II. Algebraic and Geometric Topology, Tome 23 (2023) no. 7, pp. 3357-3394. doi: 10.2140/agt.2023.23.3357
Cité par Sources :
