The Devinatz–Hopkins theorem via algebraic geometry
Algebraic and Geometric Topology, Tome 23 (2023) no. 7, pp. 3015-3042

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show how a continuous action of the Morava stabilizer group 𝔾n on the Lubin–Tate spectrum En, satisfying the conclusion Enh𝔾n ≃ LK(n)S of the Devinatz–Hopkins theorem, may be obtained by monodromy on the stack of oriented deformations of formal groups in the context of formal spectral algebraic geometry.

DOI : 10.2140/agt.2023.23.3015
Keywords: chromatic, spectral algebraic geometry, Morava stabilizer, Lubin–Tate

Gregoric, Rok 1

1 Department of Mathematics, The University of Texas at Austin, Austin, TX, United States
@article{10_2140_agt_2023_23_3015,
     author = {Gregoric, Rok},
     title = {The {Devinatz{\textendash}Hopkins} theorem via algebraic geometry},
     journal = {Algebraic and Geometric Topology},
     pages = {3015--3042},
     publisher = {mathdoc},
     volume = {23},
     number = {7},
     year = {2023},
     doi = {10.2140/agt.2023.23.3015},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3015/}
}
TY  - JOUR
AU  - Gregoric, Rok
TI  - The Devinatz–Hopkins theorem via algebraic geometry
JO  - Algebraic and Geometric Topology
PY  - 2023
SP  - 3015
EP  - 3042
VL  - 23
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3015/
DO  - 10.2140/agt.2023.23.3015
ID  - 10_2140_agt_2023_23_3015
ER  - 
%0 Journal Article
%A Gregoric, Rok
%T The Devinatz–Hopkins theorem via algebraic geometry
%J Algebraic and Geometric Topology
%D 2023
%P 3015-3042
%V 23
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.3015/
%R 10.2140/agt.2023.23.3015
%F 10_2140_agt_2023_23_3015
Gregoric, Rok. The Devinatz–Hopkins theorem via algebraic geometry. Algebraic and Geometric Topology, Tome 23 (2023) no. 7, pp. 3015-3042. doi: 10.2140/agt.2023.23.3015

Cité par Sources :