A mnemonic for the Lipshitz–Ozsváth–Thurston correspondence
Algebraic and Geometric Topology, Tome 23 (2023) no. 6, pp. 2519-2543

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

When k is a field, type D structures over the algebra k[u,v]∕(uv) are equivalent to immersed curves decorated with local systems in the twice-punctured disk. Consequently, knot Floer homology, as a type D structure over k[u,v]∕(uv), can be viewed as a set of immersed curves. With this observation as a starting point, given a knot K in S3, we realize the immersed curve invariant HF^(S3 \ ν ∘(K)) of Hanselman, Rasmussen and Watson by converting the twice-punctured disk to a once-punctured torus via a handle attachment. This recovers a result of Lipshitz, Ozsváth and Thurston calculating the bordered invariant of S3 \ ν ∘(K) in terms of the knot Floer homology of K.

DOI : 10.2140/agt.2023.23.2519
Keywords: Fukaya categories of punctured surfaces, bordered Heegaard Floer theory, multicurve invariants, knot Floer homology

Kotelskiy, Artem 1 ; Watson, Liam 2 ; Zibrowius, Claudius 3

1 Department of Mathematics, Indiana University, Bloomington, IN, United States, Department of Mathematics, Stony Brook University, Stony Brook, NY, United States
2 Department of Mathematics, University of British Columbia, Vancouver, BC, Canada
3 Faculty of Mathematics, University of Regensburg, Regensburg, Germany, Department of Mathematical Sciences, Durham University, Durham, United Kingdom
@article{10_2140_agt_2023_23_2519,
     author = {Kotelskiy, Artem and Watson, Liam and Zibrowius, Claudius},
     title = {A mnemonic for the {Lipshitz{\textendash}Ozsv\'ath{\textendash}Thurston} correspondence},
     journal = {Algebraic and Geometric Topology},
     pages = {2519--2543},
     publisher = {mathdoc},
     volume = {23},
     number = {6},
     year = {2023},
     doi = {10.2140/agt.2023.23.2519},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.2519/}
}
TY  - JOUR
AU  - Kotelskiy, Artem
AU  - Watson, Liam
AU  - Zibrowius, Claudius
TI  - A mnemonic for the Lipshitz–Ozsváth–Thurston correspondence
JO  - Algebraic and Geometric Topology
PY  - 2023
SP  - 2519
EP  - 2543
VL  - 23
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.2519/
DO  - 10.2140/agt.2023.23.2519
ID  - 10_2140_agt_2023_23_2519
ER  - 
%0 Journal Article
%A Kotelskiy, Artem
%A Watson, Liam
%A Zibrowius, Claudius
%T A mnemonic for the Lipshitz–Ozsváth–Thurston correspondence
%J Algebraic and Geometric Topology
%D 2023
%P 2519-2543
%V 23
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.2519/
%R 10.2140/agt.2023.23.2519
%F 10_2140_agt_2023_23_2519
Kotelskiy, Artem; Watson, Liam; Zibrowius, Claudius. A mnemonic for the Lipshitz–Ozsváth–Thurston correspondence. Algebraic and Geometric Topology, Tome 23 (2023) no. 6, pp. 2519-2543. doi: 10.2140/agt.2023.23.2519

Cité par Sources :