External Spanier–Whitehead duality and homology representation theorems for diagram spaces
Algebraic and Geometric Topology, Tome 23 (2023) no. 1, pp. 155-216
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We construct a Spanier–Whitehead type duality functor relating finite 𝒞–spectra to finite 𝒞op –spectra and prove that every 𝒞–homology theory is given by taking the homotopy groups of a balanced smash product with a fixed 𝒞op –spectrum. We use this to construct Chern characters for certain rational 𝒞–homology theories.
Keywords:
spaces over a category, $\mathcal{C}$–homology theories,
representation theorems, external Spanier–Whitehead
duality, Chern character
Affiliations des auteurs :
Lackmann, Malte 1
@article{10_2140_agt_2023_23_155,
author = {Lackmann, Malte},
title = {External {Spanier{\textendash}Whitehead} duality and homology representation theorems for diagram spaces},
journal = {Algebraic and Geometric Topology},
pages = {155--216},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2023},
doi = {10.2140/agt.2023.23.155},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.155/}
}
TY - JOUR AU - Lackmann, Malte TI - External Spanier–Whitehead duality and homology representation theorems for diagram spaces JO - Algebraic and Geometric Topology PY - 2023 SP - 155 EP - 216 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.155/ DO - 10.2140/agt.2023.23.155 ID - 10_2140_agt_2023_23_155 ER -
%0 Journal Article %A Lackmann, Malte %T External Spanier–Whitehead duality and homology representation theorems for diagram spaces %J Algebraic and Geometric Topology %D 2023 %P 155-216 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2023.23.155/ %R 10.2140/agt.2023.23.155 %F 10_2140_agt_2023_23_155
Lackmann, Malte. External Spanier–Whitehead duality and homology representation theorems for diagram spaces. Algebraic and Geometric Topology, Tome 23 (2023) no. 1, pp. 155-216. doi: 10.2140/agt.2023.23.155
Cité par Sources :