Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce a convenient definition for weak cyclic operads, which is based on unrooted trees and Segal conditions. More specifically, we introduce a category Ξ of trees, which carries a tight relationship to the Moerdijk–Weiss category of rooted trees Ω. We prove a nerve theorem exhibiting colored cyclic operads as presheaves on Ξ which satisfy a Segal condition. Finally, we produce a Quillen model category whose fibrant objects satisfy a weak Segal condition, and we consider these objects as an up-to-homotopy generalization of the concept of cyclic operad.
Keywords: cyclic operad, dendroidal set, Quillen model category, Reedy category
Hackney, Philip 1 ; Robertson, Marcy 2 ; Yau, Donald 3
@article{10_2140_agt_2019_19_863,
author = {Hackney, Philip and Robertson, Marcy and Yau, Donald},
title = {Higher cyclic operads},
journal = {Algebraic and Geometric Topology},
pages = {863--940},
publisher = {mathdoc},
volume = {19},
number = {2},
year = {2019},
doi = {10.2140/agt.2019.19.863},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.863/}
}
TY - JOUR AU - Hackney, Philip AU - Robertson, Marcy AU - Yau, Donald TI - Higher cyclic operads JO - Algebraic and Geometric Topology PY - 2019 SP - 863 EP - 940 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.863/ DO - 10.2140/agt.2019.19.863 ID - 10_2140_agt_2019_19_863 ER -
Hackney, Philip; Robertson, Marcy; Yau, Donald. Higher cyclic operads. Algebraic and Geometric Topology, Tome 19 (2019) no. 2, pp. 863-940. doi: 10.2140/agt.2019.19.863
Cité par Sources :