On the homotopy types of Sp(n) gauge groups
Algebraic and Geometric Topology, Tome 19 (2019) no. 1, pp. 491-502
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let Gk,n be the gauge group of the principal Sp(n)–bundle over S4 corresponding to k ∈ ℤ≅π3(Sp(n)). We refine the result of Sutherland on the homotopy types of Gk,n and relate it to the order of a certain Samelson product in Sp(n). Then we classify the p–local homotopy types of Gk,n for (p − 1)2 + 1 ≥ 2n.
Classification :
54C35, 55P15
Keywords: gauge group, homotopy type, unstable K–theory
Keywords: gauge group, homotopy type, unstable K–theory
Affiliations des auteurs :
Kishimoto, Daisuke 1 ; Kono, Akira 2
@article{10_2140_agt_2019_19_491,
author = {Kishimoto, Daisuke and Kono, Akira},
title = {On the homotopy types of {Sp(n)} gauge groups},
journal = {Algebraic and Geometric Topology},
pages = {491--502},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2019},
doi = {10.2140/agt.2019.19.491},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.491/}
}
TY - JOUR AU - Kishimoto, Daisuke AU - Kono, Akira TI - On the homotopy types of Sp(n) gauge groups JO - Algebraic and Geometric Topology PY - 2019 SP - 491 EP - 502 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.491/ DO - 10.2140/agt.2019.19.491 ID - 10_2140_agt_2019_19_491 ER -
Kishimoto, Daisuke; Kono, Akira. On the homotopy types of Sp(n) gauge groups. Algebraic and Geometric Topology, Tome 19 (2019) no. 1, pp. 491-502. doi: 10.2140/agt.2019.19.491
Cité par Sources :