Torsion homology and cellular approximation
Algebraic and Geometric Topology, Tome 19 (2019) no. 1, pp. 457-476
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We describe the role of the Schur multiplier in the structure of the p–torsion of discrete groups. More concretely, we show how the knowledge of H2G allows us to approximate many groups by colimits of copies of p–groups. Our examples include interesting families of noncommutative infinite groups, including Burnside groups, certain solvable groups and branch groups. We also provide a counterexample for a conjecture of Emmanuel Farjoun.
Classification :
20F99, 55P60
Keywords: Torsion, homology, cellular, group
Keywords: Torsion, homology, cellular, group
Affiliations des auteurs :
Flores, Ramón 1 ; Muro, Fernando 2
@article{10_2140_agt_2019_19_457,
author = {Flores, Ram\'on and Muro, Fernando},
title = {Torsion homology and cellular approximation},
journal = {Algebraic and Geometric Topology},
pages = {457--476},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2019},
doi = {10.2140/agt.2019.19.457},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.457/}
}
TY - JOUR AU - Flores, Ramón AU - Muro, Fernando TI - Torsion homology and cellular approximation JO - Algebraic and Geometric Topology PY - 2019 SP - 457 EP - 476 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.457/ DO - 10.2140/agt.2019.19.457 ID - 10_2140_agt_2019_19_457 ER -
Flores, Ramón; Muro, Fernando. Torsion homology and cellular approximation. Algebraic and Geometric Topology, Tome 19 (2019) no. 1, pp. 457-476. doi: 10.2140/agt.2019.19.457
Cité par Sources :