Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study the local homology of Artin groups using weighted discrete Morse theory. In all finite and affine cases, we are able to construct Morse matchings of a special type (we call them “precise matchings”). The existence of precise matchings implies that the homology has a squarefree torsion. This property was known for Artin groups of finite type, but not in general for Artin groups of affine type. We also use the constructed matchings to compute the local homology in all exceptional cases, correcting some results in the literature.
Keywords: Artin groups, discrete Morse theory, homology
Paolini, Giovanni 1
@article{10_2140_agt_2019_19_3615,
     author = {Paolini, Giovanni},
     title = {On the local homology of {Artin} groups of finite and affine type},
     journal = {Algebraic and Geometric Topology},
     pages = {3615--3639},
     publisher = {mathdoc},
     volume = {19},
     number = {7},
     year = {2019},
     doi = {10.2140/agt.2019.19.3615},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3615/}
}
                      
                      
                    TY - JOUR AU - Paolini, Giovanni TI - On the local homology of Artin groups of finite and affine type JO - Algebraic and Geometric Topology PY - 2019 SP - 3615 EP - 3639 VL - 19 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3615/ DO - 10.2140/agt.2019.19.3615 ID - 10_2140_agt_2019_19_3615 ER -
%0 Journal Article %A Paolini, Giovanni %T On the local homology of Artin groups of finite and affine type %J Algebraic and Geometric Topology %D 2019 %P 3615-3639 %V 19 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3615/ %R 10.2140/agt.2019.19.3615 %F 10_2140_agt_2019_19_3615
Paolini, Giovanni. On the local homology of Artin groups of finite and affine type. Algebraic and Geometric Topology, Tome 19 (2019) no. 7, pp. 3615-3639. doi: 10.2140/agt.2019.19.3615
Cité par Sources :
