On Kauffman bracket skein modules of marked 3–manifolds and the Chebyshev–Frobenius homomorphism
Algebraic and Geometric Topology, Tome 19 (2019) no. 7, pp. 3453-3509

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study the skein algebras of marked surfaces and the skein modules of marked 3–manifolds. Muller showed that skein algebras of totally marked surfaces may be embedded in easy-to-study algebras known as quantum tori. We first extend Muller’s result to permit marked surfaces with unmarked boundary components. The addition of unmarked components allows us to develop a surgery theory which enables us to extend the Chebyshev homomorphism of Bonahon and Wong between skein algebras of unmarked surfaces to a “Chebyshev–Frobenius homomorphism” between skein modules of marked 3–manifolds. We show that the image of the Chebyshev–Frobenius homomorphism is either transparent or skew-transparent. In addition, we make use of the Muller algebra method to calculate the center of the skein algebra of a marked surface when the quantum parameter is not a root of unity.

DOI : 10.2140/agt.2019.19.3453
Classification : 57M25, 57N10
Keywords: Kauffman bracket skein module, Chebyshev homomorphism

Lê, Thang 1 ; Paprocki, Jonathan 1

1 School of Mathematics, Georgia Institute of Technology, Atlanta, GA, United States
@article{10_2140_agt_2019_19_3453,
     author = {L\^e, Thang and Paprocki, Jonathan},
     title = {On {Kauffman} bracket skein modules of marked 3{\textendash}manifolds and the {Chebyshev{\textendash}Frobenius} homomorphism},
     journal = {Algebraic and Geometric Topology},
     pages = {3453--3509},
     publisher = {mathdoc},
     volume = {19},
     number = {7},
     year = {2019},
     doi = {10.2140/agt.2019.19.3453},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3453/}
}
TY  - JOUR
AU  - Lê, Thang
AU  - Paprocki, Jonathan
TI  - On Kauffman bracket skein modules of marked 3–manifolds and the Chebyshev–Frobenius homomorphism
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 3453
EP  - 3509
VL  - 19
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3453/
DO  - 10.2140/agt.2019.19.3453
ID  - 10_2140_agt_2019_19_3453
ER  - 
%0 Journal Article
%A Lê, Thang
%A Paprocki, Jonathan
%T On Kauffman bracket skein modules of marked 3–manifolds and the Chebyshev–Frobenius homomorphism
%J Algebraic and Geometric Topology
%D 2019
%P 3453-3509
%V 19
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3453/
%R 10.2140/agt.2019.19.3453
%F 10_2140_agt_2019_19_3453
Lê, Thang; Paprocki, Jonathan. On Kauffman bracket skein modules of marked 3–manifolds and the Chebyshev–Frobenius homomorphism. Algebraic and Geometric Topology, Tome 19 (2019) no. 7, pp. 3453-3509. doi: 10.2140/agt.2019.19.3453

Cité par Sources :