Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Ropelength and embedding thickness are related measures of geometric complexity of classical knots and links in Euclidean space. In their recent work, Freedman and Krushkal posed a question regarding lower bounds for embedding thickness of n–component links in terms of the Milnor linking numbers. The main goal of the current paper is to provide such estimates, and thus generalize the known linking number bound. In the process, we collect several facts about finite-type invariants and ropelength/crossing number of knots. We give examples of families of knots where such estimates behave better than the well-known knot–genus estimate.
Keywords: knots, links, ropelength, thickness, finite type invariants
Komendarczyk, Rafal 1 ; Michaelides, Andreas 2
@article{10_2140_agt_2019_19_3335,
author = {Komendarczyk, Rafal and Michaelides, Andreas},
title = {Ropelength, crossing number and finite-type invariants of links},
journal = {Algebraic and Geometric Topology},
pages = {3335--3357},
publisher = {mathdoc},
volume = {19},
number = {7},
year = {2019},
doi = {10.2140/agt.2019.19.3335},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3335/}
}
TY - JOUR AU - Komendarczyk, Rafal AU - Michaelides, Andreas TI - Ropelength, crossing number and finite-type invariants of links JO - Algebraic and Geometric Topology PY - 2019 SP - 3335 EP - 3357 VL - 19 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3335/ DO - 10.2140/agt.2019.19.3335 ID - 10_2140_agt_2019_19_3335 ER -
%0 Journal Article %A Komendarczyk, Rafal %A Michaelides, Andreas %T Ropelength, crossing number and finite-type invariants of links %J Algebraic and Geometric Topology %D 2019 %P 3335-3357 %V 19 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3335/ %R 10.2140/agt.2019.19.3335 %F 10_2140_agt_2019_19_3335
Komendarczyk, Rafal; Michaelides, Andreas. Ropelength, crossing number and finite-type invariants of links. Algebraic and Geometric Topology, Tome 19 (2019) no. 7, pp. 3335-3357. doi: 10.2140/agt.2019.19.3335
Cité par Sources :