Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
To a region C of the plane satisfying a suitable convexity condition we associate a knot concordance invariant ϒC. For appropriate choices of the domain this construction gives back some known knot Floer concordance invariants like Rasmussen’s hi invariants, and the Ozsváth–Stipsicz–Szabó upsilon invariant. Furthermore, to three such regions C, C+ and C− we associate invariants ϒC±,C generalizing the Kim–Livingston secondary invariant. We show how to compute these invariants for some interesting classes of knots (including alternating and torus knots), and we use them to obstruct concordances to Floer thin knots and algebraic knots.
Keywords: knot Floer homology, upsilon invariant, $L$–space knots
Alfieri, Antonio 1
@article{10_2140_agt_2019_19_3315,
author = {Alfieri, Antonio},
title = {Upsilon-type concordance invariants},
journal = {Algebraic and Geometric Topology},
pages = {3315--3334},
publisher = {mathdoc},
volume = {19},
number = {7},
year = {2019},
doi = {10.2140/agt.2019.19.3315},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3315/}
}
TY - JOUR AU - Alfieri, Antonio TI - Upsilon-type concordance invariants JO - Algebraic and Geometric Topology PY - 2019 SP - 3315 EP - 3334 VL - 19 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3315/ DO - 10.2140/agt.2019.19.3315 ID - 10_2140_agt_2019_19_3315 ER -
Alfieri, Antonio. Upsilon-type concordance invariants. Algebraic and Geometric Topology, Tome 19 (2019) no. 7, pp. 3315-3334. doi: 10.2140/agt.2019.19.3315
Cité par Sources :