Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We functorially associate to each relative ∞–category (ℛ,W) a simplicial space N∞R(ℛ,W), called its Rezk nerve (a straightforward generalization of Rezk’s “classification diagram” construction for relative categories). We prove the following local and global universal properties of this construction: (i) that the complete Segal space generated by the Rezk nerve N∞R(ℛ,W) is precisely the one corresponding to the localization ℛ[[W−1]]; and (ii) that the Rezk nerve functor defines an equivalence ℛelCat∞[[WBK−1]] →∼Cat∞ from a localization of the ∞–category of relative ∞–categories to the ∞–category of ∞–categories.
Keywords: $\infty$–category, relative $\infty$–category, localization, Rezk nerve, classification diagram
Mazel-Gee, Aaron 1
@article{10_2140_agt_2019_19_3217,
author = {Mazel-Gee, Aaron},
title = {The universality of the {Rezk} nerve},
journal = {Algebraic and Geometric Topology},
pages = {3217--3260},
publisher = {mathdoc},
volume = {19},
number = {7},
year = {2019},
doi = {10.2140/agt.2019.19.3217},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3217/}
}
Mazel-Gee, Aaron. The universality of the Rezk nerve. Algebraic and Geometric Topology, Tome 19 (2019) no. 7, pp. 3217-3260. doi: 10.2140/agt.2019.19.3217
Cité par Sources :