The ∞–categorical Eckmann–Hilton argument
Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 3119-3170
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define a reduced ∞–operad P to be d–connected if the spaces P(n) of n–ary operations are d–connected for all n ≥ 0. Let P and Q be two reduced ∞–operads. We prove that if P is d1–connected and Q is d2–connected, then their Boardman–Vogt tensor product P⊗Q is (d1+d2+2)–connected. We consider this to be a natural ∞–categorical generalization of the classical Eckmann–Hilton argument.
Classification :
18D05, 18D50, 55P48
Keywords: Eckmann–Hilton argument, infinity operads
Keywords: Eckmann–Hilton argument, infinity operads
Affiliations des auteurs :
Schlank, Tomer 1 ; Yanovski, Lior 1
@article{10_2140_agt_2019_19_3119,
author = {Schlank, Tomer and Yanovski, Lior},
title = {The \ensuremath{\infty}{\textendash}categorical {Eckmann{\textendash}Hilton} argument},
journal = {Algebraic and Geometric Topology},
pages = {3119--3170},
publisher = {mathdoc},
volume = {19},
number = {6},
year = {2019},
doi = {10.2140/agt.2019.19.3119},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3119/}
}
TY - JOUR AU - Schlank, Tomer AU - Yanovski, Lior TI - The ∞–categorical Eckmann–Hilton argument JO - Algebraic and Geometric Topology PY - 2019 SP - 3119 EP - 3170 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3119/ DO - 10.2140/agt.2019.19.3119 ID - 10_2140_agt_2019_19_3119 ER -
Schlank, Tomer; Yanovski, Lior. The ∞–categorical Eckmann–Hilton argument. Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 3119-3170. doi: 10.2140/agt.2019.19.3119
Cité par Sources :