The ∞–categorical Eckmann–Hilton argument
Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 3119-3170

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define a reduced ∞–operad P to be d–connected if the spaces P(n) of n–ary operations are d–connected for all n ≥ 0. Let P and Q be two reduced ∞–operads. We prove that if P is d1–connected and Q is d2–connected, then their Boardman–Vogt tensor product P⊗Q is (d1+d2+2)–connected. We consider this to be a natural ∞–categorical generalization of the classical Eckmann–Hilton argument.

DOI : 10.2140/agt.2019.19.3119
Classification : 18D05, 18D50, 55P48
Keywords: Eckmann–Hilton argument, infinity operads

Schlank, Tomer 1 ; Yanovski, Lior 1

1 Einstein Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel
@article{10_2140_agt_2019_19_3119,
     author = {Schlank, Tomer and Yanovski, Lior},
     title = {The \ensuremath{\infty}{\textendash}categorical {Eckmann{\textendash}Hilton} argument},
     journal = {Algebraic and Geometric Topology},
     pages = {3119--3170},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2019},
     doi = {10.2140/agt.2019.19.3119},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3119/}
}
TY  - JOUR
AU  - Schlank, Tomer
AU  - Yanovski, Lior
TI  - The ∞–categorical Eckmann–Hilton argument
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 3119
EP  - 3170
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3119/
DO  - 10.2140/agt.2019.19.3119
ID  - 10_2140_agt_2019_19_3119
ER  - 
%0 Journal Article
%A Schlank, Tomer
%A Yanovski, Lior
%T The ∞–categorical Eckmann–Hilton argument
%J Algebraic and Geometric Topology
%D 2019
%P 3119-3170
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3119/
%R 10.2140/agt.2019.19.3119
%F 10_2140_agt_2019_19_3119
Schlank, Tomer; Yanovski, Lior. The ∞–categorical Eckmann–Hilton argument. Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 3119-3170. doi: 10.2140/agt.2019.19.3119

Cité par Sources :