Coarse homology theories and finite decomposition complexity
Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 3033-3074
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using the language of coarse homology theories, we provide an axiomatic account of vanishing results for the fibres of forget-control maps associated to spaces with equivariant finite decomposition complexity.
Classification :
20F69, 20F65
Keywords: coarse homology theories, finite decomposition complexity
Keywords: coarse homology theories, finite decomposition complexity
Affiliations des auteurs :
Bunke, Ulrich 1 ; Engel, Alexander 1 ; Kasprowski, Daniel 2 ; Winges, Christoph 2
@article{10_2140_agt_2019_19_3033,
author = {Bunke, Ulrich and Engel, Alexander and Kasprowski, Daniel and Winges, Christoph},
title = {Coarse homology theories and finite decomposition complexity},
journal = {Algebraic and Geometric Topology},
pages = {3033--3074},
publisher = {mathdoc},
volume = {19},
number = {6},
year = {2019},
doi = {10.2140/agt.2019.19.3033},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3033/}
}
TY - JOUR AU - Bunke, Ulrich AU - Engel, Alexander AU - Kasprowski, Daniel AU - Winges, Christoph TI - Coarse homology theories and finite decomposition complexity JO - Algebraic and Geometric Topology PY - 2019 SP - 3033 EP - 3074 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3033/ DO - 10.2140/agt.2019.19.3033 ID - 10_2140_agt_2019_19_3033 ER -
%0 Journal Article %A Bunke, Ulrich %A Engel, Alexander %A Kasprowski, Daniel %A Winges, Christoph %T Coarse homology theories and finite decomposition complexity %J Algebraic and Geometric Topology %D 2019 %P 3033-3074 %V 19 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.3033/ %R 10.2140/agt.2019.19.3033 %F 10_2140_agt_2019_19_3033
Bunke, Ulrich; Engel, Alexander; Kasprowski, Daniel; Winges, Christoph. Coarse homology theories and finite decomposition complexity. Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 3033-3074. doi: 10.2140/agt.2019.19.3033
Cité par Sources :