Quasi-right-veering braids and nonloose links
Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 2989-3032
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce a notion of quasi-right-veering for closed braids, which plays an analogous role to right-veering for open books. We show that a transverse link K in a contact 3–manifold (M,ξ) is nonloose if and only if every braid representative of K with respect to every open book decomposition that supports (M,ξ) is quasi-right-veering. We also show that several definitions of right-veering closed braids are equivalent.
Classification :
57M50, 57M27
Keywords: quasi-right-veering, loose transverse knots
Keywords: quasi-right-veering, loose transverse knots
Affiliations des auteurs :
Ito, Tetsuya 1 ; Kawamuro, Keiko 2
@article{10_2140_agt_2019_19_2989,
author = {Ito, Tetsuya and Kawamuro, Keiko},
title = {Quasi-right-veering braids and nonloose links},
journal = {Algebraic and Geometric Topology},
pages = {2989--3032},
publisher = {mathdoc},
volume = {19},
number = {6},
year = {2019},
doi = {10.2140/agt.2019.19.2989},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2989/}
}
TY - JOUR AU - Ito, Tetsuya AU - Kawamuro, Keiko TI - Quasi-right-veering braids and nonloose links JO - Algebraic and Geometric Topology PY - 2019 SP - 2989 EP - 3032 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2989/ DO - 10.2140/agt.2019.19.2989 ID - 10_2140_agt_2019_19_2989 ER -
%0 Journal Article %A Ito, Tetsuya %A Kawamuro, Keiko %T Quasi-right-veering braids and nonloose links %J Algebraic and Geometric Topology %D 2019 %P 2989-3032 %V 19 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2989/ %R 10.2140/agt.2019.19.2989 %F 10_2140_agt_2019_19_2989
Ito, Tetsuya; Kawamuro, Keiko. Quasi-right-veering braids and nonloose links. Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 2989-3032. doi: 10.2140/agt.2019.19.2989
Cité par Sources :