Nonorientable Lagrangian surfaces in rational 4–manifolds
Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 2837-2854
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that for any nonzero class A in H2(X; ℤ2) in a rational 4−manifold X, A is represented by a nonorientable embedded Lagrangian surface L (for some symplectic structure) if and only if P(A) ≡ χ(L)(mod4), where P(A) denotes the mod 4 valued Pontryagin square of A.
Classification :
53D12, 57Q35
Keywords: nonorientable Lagrangian surface, Lagrangian blowup
Keywords: nonorientable Lagrangian surface, Lagrangian blowup
Affiliations des auteurs :
Dai, Bo 1 ; Ho, Chung-I 2 ; Li, Tian-Jun 3
@article{10_2140_agt_2019_19_2837,
author = {Dai, Bo and Ho, Chung-I and Li, Tian-Jun},
title = {Nonorientable {Lagrangian} surfaces in rational 4{\textendash}manifolds},
journal = {Algebraic and Geometric Topology},
pages = {2837--2854},
publisher = {mathdoc},
volume = {19},
number = {6},
year = {2019},
doi = {10.2140/agt.2019.19.2837},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2837/}
}
TY - JOUR AU - Dai, Bo AU - Ho, Chung-I AU - Li, Tian-Jun TI - Nonorientable Lagrangian surfaces in rational 4–manifolds JO - Algebraic and Geometric Topology PY - 2019 SP - 2837 EP - 2854 VL - 19 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2837/ DO - 10.2140/agt.2019.19.2837 ID - 10_2140_agt_2019_19_2837 ER -
%0 Journal Article %A Dai, Bo %A Ho, Chung-I %A Li, Tian-Jun %T Nonorientable Lagrangian surfaces in rational 4–manifolds %J Algebraic and Geometric Topology %D 2019 %P 2837-2854 %V 19 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2837/ %R 10.2140/agt.2019.19.2837 %F 10_2140_agt_2019_19_2837
Dai, Bo; Ho, Chung-I; Li, Tian-Jun. Nonorientable Lagrangian surfaces in rational 4–manifolds. Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 2837-2854. doi: 10.2140/agt.2019.19.2837
Cité par Sources :