On Ruan’s cohomological crepant resolution conjecture for the complexified Bianchi orbifolds
Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 2715-2762

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give formulae for the Chen–Ruan orbifold cohomology for the orbifolds given by a Bianchi group acting on complex hyperbolic 3–space.

The Bianchi groups are the arithmetic groups PSL2(O), where O is the ring of integers in an imaginary quadratic number field. The underlying real orbifolds which help us in our study, given by the action of a Bianchi group on real hyperbolic 3–space (which is a model for its classifying space for proper actions), have applications in physics.

We then prove that, for any such orbifold, its Chen–Ruan orbifold cohomology ring is isomorphic to the usual cohomology ring of any crepant resolution of its coarse moduli space. By vanishing of the quantum corrections, we show that this result fits in with Ruan’s cohomological crepant resolution conjecture.

DOI : 10.2140/agt.2019.19.2715
Classification : 55N32
Keywords: Chen–Ruan orbifold cohomology, Bianchi orbifolds

Perroni, Fabio 1 ; Rahm, Alexander 2

1 Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
2 Mathematics Research Unit, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
@article{10_2140_agt_2019_19_2715,
     author = {Perroni, Fabio and Rahm, Alexander},
     title = {On {Ruan{\textquoteright}s} cohomological crepant resolution conjecture for the complexified {Bianchi} orbifolds},
     journal = {Algebraic and Geometric Topology},
     pages = {2715--2762},
     publisher = {mathdoc},
     volume = {19},
     number = {6},
     year = {2019},
     doi = {10.2140/agt.2019.19.2715},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2715/}
}
TY  - JOUR
AU  - Perroni, Fabio
AU  - Rahm, Alexander
TI  - On Ruan’s cohomological crepant resolution conjecture for the complexified Bianchi orbifolds
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 2715
EP  - 2762
VL  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2715/
DO  - 10.2140/agt.2019.19.2715
ID  - 10_2140_agt_2019_19_2715
ER  - 
%0 Journal Article
%A Perroni, Fabio
%A Rahm, Alexander
%T On Ruan’s cohomological crepant resolution conjecture for the complexified Bianchi orbifolds
%J Algebraic and Geometric Topology
%D 2019
%P 2715-2762
%V 19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2715/
%R 10.2140/agt.2019.19.2715
%F 10_2140_agt_2019_19_2715
Perroni, Fabio; Rahm, Alexander. On Ruan’s cohomological crepant resolution conjecture for the complexified Bianchi orbifolds. Algebraic and Geometric Topology, Tome 19 (2019) no. 6, pp. 2715-2762. doi: 10.2140/agt.2019.19.2715

Cité par Sources :