New hyperbolic 4–manifolds of low volume
Algebraic and Geometric Topology, Tome 19 (2019) no. 5, pp. 2653-2676

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that there are at least two commensurability classes of (cusped, arithmetic) minimal-volume hyperbolic 4–manifolds. Moreover, by applying a well-known technique due to Gromov and Piatetski-Shapiro, we build the smallest known nonarithmetic hyperbolic 4–manifold.

DOI : 10.2140/agt.2019.19.2653
Classification : 57M50, 57N16
Keywords: hyperbolic $4$–manifold, minimal-volume hyperbolic manifolds

Riolo, Stefano 1 ; Slavich, Leone 2

1 Institut de mathématiques, University of Neuchâtel, Neuchâtel, Switzerland
2 Department of Mathematics, University of Pisa, Pisa, Italy
@article{10_2140_agt_2019_19_2653,
     author = {Riolo, Stefano and Slavich, Leone},
     title = {New hyperbolic 4{\textendash}manifolds of low volume},
     journal = {Algebraic and Geometric Topology},
     pages = {2653--2676},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2019},
     doi = {10.2140/agt.2019.19.2653},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2653/}
}
TY  - JOUR
AU  - Riolo, Stefano
AU  - Slavich, Leone
TI  - New hyperbolic 4–manifolds of low volume
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 2653
EP  - 2676
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2653/
DO  - 10.2140/agt.2019.19.2653
ID  - 10_2140_agt_2019_19_2653
ER  - 
%0 Journal Article
%A Riolo, Stefano
%A Slavich, Leone
%T New hyperbolic 4–manifolds of low volume
%J Algebraic and Geometric Topology
%D 2019
%P 2653-2676
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2653/
%R 10.2140/agt.2019.19.2653
%F 10_2140_agt_2019_19_2653
Riolo, Stefano; Slavich, Leone. New hyperbolic 4–manifolds of low volume. Algebraic and Geometric Topology, Tome 19 (2019) no. 5, pp. 2653-2676. doi: 10.2140/agt.2019.19.2653

Cité par Sources :