New hyperbolic 4–manifolds of low volume
Algebraic and Geometric Topology, Tome 19 (2019) no. 5, pp. 2653-2676
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that there are at least two commensurability classes of (cusped, arithmetic) minimal-volume hyperbolic 4–manifolds. Moreover, by applying a well-known technique due to Gromov and Piatetski-Shapiro, we build the smallest known nonarithmetic hyperbolic 4–manifold.
Classification :
57M50, 57N16
Keywords: hyperbolic $4$–manifold, minimal-volume hyperbolic manifolds
Keywords: hyperbolic $4$–manifold, minimal-volume hyperbolic manifolds
Affiliations des auteurs :
Riolo, Stefano 1 ; Slavich, Leone 2
@article{10_2140_agt_2019_19_2653,
author = {Riolo, Stefano and Slavich, Leone},
title = {New hyperbolic 4{\textendash}manifolds of low volume},
journal = {Algebraic and Geometric Topology},
pages = {2653--2676},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {2019},
doi = {10.2140/agt.2019.19.2653},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2653/}
}
TY - JOUR AU - Riolo, Stefano AU - Slavich, Leone TI - New hyperbolic 4–manifolds of low volume JO - Algebraic and Geometric Topology PY - 2019 SP - 2653 EP - 2676 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2653/ DO - 10.2140/agt.2019.19.2653 ID - 10_2140_agt_2019_19_2653 ER -
Riolo, Stefano; Slavich, Leone. New hyperbolic 4–manifolds of low volume. Algebraic and Geometric Topology, Tome 19 (2019) no. 5, pp. 2653-2676. doi: 10.2140/agt.2019.19.2653
Cité par Sources :