Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the limiting unicolored sl(N) Khovanov–Rozansky chain complex of any infinite positive braid categorifies a highest-weight projector. This result extends an earlier result of Cautis categorifying highest-weight projectors using the limiting complex of infinite torus braids. Additionally, we show that the results hold in the case of colored homfly–pt Khovanov–Rozansky homology as well. An application of this result is given in finding a partial isomorphism between the homfly–pt homology of any braid positive link and the stable homfly–pt homology of the infinite torus knot as computed by Hogancamp.
Keywords: Khovanov homology, Khovanov–Rozansky homology, link homology, colored link homology, colored Khovanov–Rozanksy homology, infinite braids, infinite twist
Abel, Michael 1 ; Willis, Michael 2
@article{10_2140_agt_2019_19_2401,
author = {Abel, Michael and Willis, Michael},
title = {Colored {Khovanov{\textendash}Rozansky} homology for infinite braids},
journal = {Algebraic and Geometric Topology},
pages = {2401--2438},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {2019},
doi = {10.2140/agt.2019.19.2401},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2401/}
}
TY - JOUR AU - Abel, Michael AU - Willis, Michael TI - Colored Khovanov–Rozansky homology for infinite braids JO - Algebraic and Geometric Topology PY - 2019 SP - 2401 EP - 2438 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2401/ DO - 10.2140/agt.2019.19.2401 ID - 10_2140_agt_2019_19_2401 ER -
%0 Journal Article %A Abel, Michael %A Willis, Michael %T Colored Khovanov–Rozansky homology for infinite braids %J Algebraic and Geometric Topology %D 2019 %P 2401-2438 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2401/ %R 10.2140/agt.2019.19.2401 %F 10_2140_agt_2019_19_2401
Abel, Michael; Willis, Michael. Colored Khovanov–Rozansky homology for infinite braids. Algebraic and Geometric Topology, Tome 19 (2019) no. 5, pp. 2401-2438. doi: 10.2140/agt.2019.19.2401
Cité par Sources :