Colored Khovanov–Rozansky homology for infinite braids
Algebraic and Geometric Topology, Tome 19 (2019) no. 5, pp. 2401-2438

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the limiting unicolored sl(N) Khovanov–Rozansky chain complex of any infinite positive braid categorifies a highest-weight projector. This result extends an earlier result of Cautis categorifying highest-weight projectors using the limiting complex of infinite torus braids. Additionally, we show that the results hold in the case of colored homflypt Khovanov–Rozansky homology as well. An application of this result is given in finding a partial isomorphism between the homflypt homology of any braid positive link and the stable homflypt homology of the infinite torus knot as computed by Hogancamp.

DOI : 10.2140/agt.2019.19.2401
Classification : 57M27
Keywords: Khovanov homology, Khovanov–Rozansky homology, link homology, colored link homology, colored Khovanov–Rozanksy homology, infinite braids, infinite twist

Abel, Michael 1 ; Willis, Michael 2

1 Department of Mathematics, Duke University, Durham, NC, United States
2 Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States
@article{10_2140_agt_2019_19_2401,
     author = {Abel, Michael and Willis, Michael},
     title = {Colored {Khovanov{\textendash}Rozansky} homology for infinite braids},
     journal = {Algebraic and Geometric Topology},
     pages = {2401--2438},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2019},
     doi = {10.2140/agt.2019.19.2401},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2401/}
}
TY  - JOUR
AU  - Abel, Michael
AU  - Willis, Michael
TI  - Colored Khovanov–Rozansky homology for infinite braids
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 2401
EP  - 2438
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2401/
DO  - 10.2140/agt.2019.19.2401
ID  - 10_2140_agt_2019_19_2401
ER  - 
%0 Journal Article
%A Abel, Michael
%A Willis, Michael
%T Colored Khovanov–Rozansky homology for infinite braids
%J Algebraic and Geometric Topology
%D 2019
%P 2401-2438
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2401/
%R 10.2140/agt.2019.19.2401
%F 10_2140_agt_2019_19_2401
Abel, Michael; Willis, Michael. Colored Khovanov–Rozansky homology for infinite braids. Algebraic and Geometric Topology, Tome 19 (2019) no. 5, pp. 2401-2438. doi: 10.2140/agt.2019.19.2401

Cité par Sources :