Seifert surfaces for genus one hyperbolic knots in the 3–sphere
Algebraic and Geometric Topology, Tome 19 (2019) no. 5, pp. 2151-2231
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that any collection of mutually disjoint and nonparallel genus one orientable Seifert surfaces in the exterior of a hyperbolic knot in the 3–sphere has at most 5 components and that this bound is optimal.
Classification :
57M25, 57N10
Keywords: hyperbolic knot, genus one knot, Seifert surface
Keywords: hyperbolic knot, genus one knot, Seifert surface
Affiliations des auteurs :
Valdez-Sánchez, Luis 1
@article{10_2140_agt_2019_19_2151,
author = {Valdez-S\'anchez, Luis},
title = {Seifert surfaces for genus one hyperbolic knots in the 3{\textendash}sphere},
journal = {Algebraic and Geometric Topology},
pages = {2151--2231},
publisher = {mathdoc},
volume = {19},
number = {5},
year = {2019},
doi = {10.2140/agt.2019.19.2151},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2151/}
}
TY - JOUR AU - Valdez-Sánchez, Luis TI - Seifert surfaces for genus one hyperbolic knots in the 3–sphere JO - Algebraic and Geometric Topology PY - 2019 SP - 2151 EP - 2231 VL - 19 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2151/ DO - 10.2140/agt.2019.19.2151 ID - 10_2140_agt_2019_19_2151 ER -
%0 Journal Article %A Valdez-Sánchez, Luis %T Seifert surfaces for genus one hyperbolic knots in the 3–sphere %J Algebraic and Geometric Topology %D 2019 %P 2151-2231 %V 19 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2151/ %R 10.2140/agt.2019.19.2151 %F 10_2140_agt_2019_19_2151
Valdez-Sánchez, Luis. Seifert surfaces for genus one hyperbolic knots in the 3–sphere. Algebraic and Geometric Topology, Tome 19 (2019) no. 5, pp. 2151-2231. doi: 10.2140/agt.2019.19.2151
Cité par Sources :