Seifert surfaces for genus one hyperbolic knots in the 3–sphere
Algebraic and Geometric Topology, Tome 19 (2019) no. 5, pp. 2151-2231

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that any collection of mutually disjoint and nonparallel genus one orientable Seifert surfaces in the exterior of a hyperbolic knot in the 3–sphere has at most 5 components and that this bound is optimal.

DOI : 10.2140/agt.2019.19.2151
Classification : 57M25, 57N10
Keywords: hyperbolic knot, genus one knot, Seifert surface

Valdez-Sánchez, Luis 1

1 Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX, United States
@article{10_2140_agt_2019_19_2151,
     author = {Valdez-S\'anchez, Luis},
     title = {Seifert surfaces for genus one hyperbolic knots in the 3{\textendash}sphere},
     journal = {Algebraic and Geometric Topology},
     pages = {2151--2231},
     publisher = {mathdoc},
     volume = {19},
     number = {5},
     year = {2019},
     doi = {10.2140/agt.2019.19.2151},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2151/}
}
TY  - JOUR
AU  - Valdez-Sánchez, Luis
TI  - Seifert surfaces for genus one hyperbolic knots in the 3–sphere
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 2151
EP  - 2231
VL  - 19
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2151/
DO  - 10.2140/agt.2019.19.2151
ID  - 10_2140_agt_2019_19_2151
ER  - 
%0 Journal Article
%A Valdez-Sánchez, Luis
%T Seifert surfaces for genus one hyperbolic knots in the 3–sphere
%J Algebraic and Geometric Topology
%D 2019
%P 2151-2231
%V 19
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2151/
%R 10.2140/agt.2019.19.2151
%F 10_2140_agt_2019_19_2151
Valdez-Sánchez, Luis. Seifert surfaces for genus one hyperbolic knots in the 3–sphere. Algebraic and Geometric Topology, Tome 19 (2019) no. 5, pp. 2151-2231. doi: 10.2140/agt.2019.19.2151

Cité par Sources :