Representing a point and the diagonal as zero loci in flag manifolds
Algebraic and Geometric Topology, Tome 19 (2019) no. 4, pp. 2061-2075

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The zero locus of a generic section of a vector bundle over a manifold defines a submanifold. A classical problem in geometry asks to realise a specified submanifold in this way. We study two cases: a point in a generalised flag manifold and the diagonal in the direct product of two copies of a generalised flag manifold. These cases are particularly interesting since they are related to ordinary and equivariant Schubert polynomials, respectively.

DOI : 10.2140/agt.2019.19.2061
Classification : 57T20, 55R25
Keywords: flag manifold, diagonal, Chern class

Kaji, Shizuo 1

1 Institute of Mathematics for Industry, Kyushu University, Fukuoka, Japan
@article{10_2140_agt_2019_19_2061,
     author = {Kaji, Shizuo},
     title = {Representing a point and the diagonal as zero loci in flag manifolds},
     journal = {Algebraic and Geometric Topology},
     pages = {2061--2075},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2019},
     doi = {10.2140/agt.2019.19.2061},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2061/}
}
TY  - JOUR
AU  - Kaji, Shizuo
TI  - Representing a point and the diagonal as zero loci in flag manifolds
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 2061
EP  - 2075
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2061/
DO  - 10.2140/agt.2019.19.2061
ID  - 10_2140_agt_2019_19_2061
ER  - 
%0 Journal Article
%A Kaji, Shizuo
%T Representing a point and the diagonal as zero loci in flag manifolds
%J Algebraic and Geometric Topology
%D 2019
%P 2061-2075
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.2061/
%R 10.2140/agt.2019.19.2061
%F 10_2140_agt_2019_19_2061
Kaji, Shizuo. Representing a point and the diagonal as zero loci in flag manifolds. Algebraic and Geometric Topology, Tome 19 (2019) no. 4, pp. 2061-2075. doi: 10.2140/agt.2019.19.2061

Cité par Sources :