The Lannes–Zarati homomorphism and decomposable elements
Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1525-1539

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X be a pointed CW–complex. The generalized conjecture on spherical classes states that the Hurewicz homomorphism H : π∗(Q0X) → H∗(Q0X) vanishes on classes of π∗(Q0X) of Adams filtration greater than 2. Let φsM: ExtAs(M, F2) → (F2 ⊗ARsM)∗ denote the sth Lannes–Zarati homomorphism for the unstable A–module M. When M = H̃∗(X), this homomorphism corresponds to an associated graded of the Hurewicz map. An algebraic version of the conjecture states that the sth Lannes–Zarati homomorphism, φsM, vanishes in any positive stem for s > 2 and for any unstable A–module M.

We prove that, for M an unstable A–module of finite type, the sth Lannes–Zarati homomorphism, φsM, vanishes on decomposable elements of the form αβ in positive stems, where α ∈ ExtAp(F2, F2) and β ∈ ExtAq(M, F2) with either p ≥ 2, q > 0 and p + q = s, or p = s ≥ 2, q = 0 and stem(β) > s − 2. Consequently, we obtain a theorem proved by Hưng and Peterson in 1998. We also prove that the fifth Lannes–Zarati homomorphism for H̃∗(ℝℙ∞) vanishes on decomposable elements in positive stems.

DOI : 10.2140/agt.2019.19.1525
Classification : 55P47, 55Q45, 55S10, 55T15
Keywords: spherical classes, loop spaces, Adams spectral sequences, Steenrod algebra, lambda algebra, invariant theory, Dickson algebra

Ngô, Tuấn 1

1 Department of Mathematics, Vietnam National University, Hanoi, Hanoi, Vietnam
@article{10_2140_agt_2019_19_1525,
     author = {Ng\^o, Tuấn},
     title = {The {Lannes{\textendash}Zarati} homomorphism and decomposable elements},
     journal = {Algebraic and Geometric Topology},
     pages = {1525--1539},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2019},
     doi = {10.2140/agt.2019.19.1525},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1525/}
}
TY  - JOUR
AU  - Ngô, Tuấn
TI  - The Lannes–Zarati homomorphism and decomposable elements
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 1525
EP  - 1539
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1525/
DO  - 10.2140/agt.2019.19.1525
ID  - 10_2140_agt_2019_19_1525
ER  - 
%0 Journal Article
%A Ngô, Tuấn
%T The Lannes–Zarati homomorphism and decomposable elements
%J Algebraic and Geometric Topology
%D 2019
%P 1525-1539
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1525/
%R 10.2140/agt.2019.19.1525
%F 10_2140_agt_2019_19_1525
Ngô, Tuấn. The Lannes–Zarati homomorphism and decomposable elements. Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1525-1539. doi: 10.2140/agt.2019.19.1525

Cité par Sources :