Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let X be a pointed CW–complex. The generalized conjecture on spherical classes states that the Hurewicz homomorphism H : π∗(Q0X) → H∗(Q0X) vanishes on classes of π∗(Q0X) of Adams filtration greater than 2. Let φsM: ExtAs(M, F2) → (F2 ⊗ARsM)∗ denote the sth Lannes–Zarati homomorphism for the unstable A–module M. When M = H̃∗(X), this homomorphism corresponds to an associated graded of the Hurewicz map. An algebraic version of the conjecture states that the sth Lannes–Zarati homomorphism, φsM, vanishes in any positive stem for s > 2 and for any unstable A–module M.
We prove that, for M an unstable A–module of finite type, the sth Lannes–Zarati homomorphism, φsM, vanishes on decomposable elements of the form αβ in positive stems, where α ∈ ExtAp(F2, F2) and β ∈ ExtAq(M, F2) with either p ≥ 2, q > 0 and p + q = s, or p = s ≥ 2, q = 0 and stem(β) > s − 2. Consequently, we obtain a theorem proved by Hưng and Peterson in 1998. We also prove that the fifth Lannes–Zarati homomorphism for H̃∗(ℝℙ∞) vanishes on decomposable elements in positive stems.
Keywords: spherical classes, loop spaces, Adams spectral sequences, Steenrod algebra, lambda algebra, invariant theory, Dickson algebra
Ngô, Tuấn 1
@article{10_2140_agt_2019_19_1525,
author = {Ng\^o, Tuấn},
title = {The {Lannes{\textendash}Zarati} homomorphism and decomposable elements},
journal = {Algebraic and Geometric Topology},
pages = {1525--1539},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2019},
doi = {10.2140/agt.2019.19.1525},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1525/}
}
TY - JOUR AU - Ngô, Tuấn TI - The Lannes–Zarati homomorphism and decomposable elements JO - Algebraic and Geometric Topology PY - 2019 SP - 1525 EP - 1539 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1525/ DO - 10.2140/agt.2019.19.1525 ID - 10_2140_agt_2019_19_1525 ER -
Ngô, Tuấn. The Lannes–Zarati homomorphism and decomposable elements. Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1525-1539. doi: 10.2140/agt.2019.19.1525
Cité par Sources :