Representing the deformation ∞–groupoid
Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1453-1476

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Our goal is to introduce a smaller, but equivalent version of the deformation ∞–groupoid associated to a homotopy Lie algebra. In the case of differential graded Lie algebras, we represent it by a universal cosimplicial object.

DOI : 10.2140/agt.2019.19.1453
Classification : 17B55, 18G55, 55U10
Keywords: deformation theory, Deligne groupoid, differential graded Lie algebras, Maurer–Cartan elements

Robert-Nicoud, Daniel 1

1 Laboratoire Analyse, Géométrie et Applications, Université Paris 13, Villetaneuse, France
@article{10_2140_agt_2019_19_1453,
     author = {Robert-Nicoud, Daniel},
     title = {Representing the deformation \ensuremath{\infty}{\textendash}groupoid},
     journal = {Algebraic and Geometric Topology},
     pages = {1453--1476},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2019},
     doi = {10.2140/agt.2019.19.1453},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1453/}
}
TY  - JOUR
AU  - Robert-Nicoud, Daniel
TI  - Representing the deformation ∞–groupoid
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 1453
EP  - 1476
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1453/
DO  - 10.2140/agt.2019.19.1453
ID  - 10_2140_agt_2019_19_1453
ER  - 
%0 Journal Article
%A Robert-Nicoud, Daniel
%T Representing the deformation ∞–groupoid
%J Algebraic and Geometric Topology
%D 2019
%P 1453-1476
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1453/
%R 10.2140/agt.2019.19.1453
%F 10_2140_agt_2019_19_1453
Robert-Nicoud, Daniel. Representing the deformation ∞–groupoid. Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1453-1476. doi: 10.2140/agt.2019.19.1453

Cité par Sources :