Representing the deformation ∞–groupoid
Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1453-1476
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Our goal is to introduce a smaller, but equivalent version of the deformation ∞–groupoid associated to a homotopy Lie algebra. In the case of differential graded Lie algebras, we represent it by a universal cosimplicial object.
Classification :
17B55, 18G55, 55U10
Keywords: deformation theory, Deligne groupoid, differential graded Lie algebras, Maurer–Cartan elements
Keywords: deformation theory, Deligne groupoid, differential graded Lie algebras, Maurer–Cartan elements
Affiliations des auteurs :
Robert-Nicoud, Daniel 1
@article{10_2140_agt_2019_19_1453,
author = {Robert-Nicoud, Daniel},
title = {Representing the deformation \ensuremath{\infty}{\textendash}groupoid},
journal = {Algebraic and Geometric Topology},
pages = {1453--1476},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2019},
doi = {10.2140/agt.2019.19.1453},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1453/}
}
TY - JOUR AU - Robert-Nicoud, Daniel TI - Representing the deformation ∞–groupoid JO - Algebraic and Geometric Topology PY - 2019 SP - 1453 EP - 1476 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1453/ DO - 10.2140/agt.2019.19.1453 ID - 10_2140_agt_2019_19_1453 ER -
Robert-Nicoud, Daniel. Representing the deformation ∞–groupoid. Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1453-1476. doi: 10.2140/agt.2019.19.1453
Cité par Sources :