Hyperbolic extensions of free groups from atoroidal ping-pong
Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1385-1411
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that all atoroidal automorphisms of Out(FN) act on the space of projectivized geodesic currents with generalized north–south dynamics. As an application, we produce new examples of nonvirtually cyclic, free and purely atoroidal subgroups of Out(FN) such that the corresponding free group extension is hyperbolic. Moreover, these subgroups are not necessarily convex cocompact.
Classification :
20F28, 20F67, 37D40
Keywords: free groups, hyperbolic extensions, $\mathrm{Out}(F_N)$, geodesic currents
Keywords: free groups, hyperbolic extensions, $\mathrm{Out}(F_N)$, geodesic currents
Affiliations des auteurs :
Uyanik, Caglar 1
@article{10_2140_agt_2019_19_1385,
author = {Uyanik, Caglar},
title = {Hyperbolic extensions of free groups from atoroidal ping-pong},
journal = {Algebraic and Geometric Topology},
pages = {1385--1411},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2019},
doi = {10.2140/agt.2019.19.1385},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1385/}
}
TY - JOUR AU - Uyanik, Caglar TI - Hyperbolic extensions of free groups from atoroidal ping-pong JO - Algebraic and Geometric Topology PY - 2019 SP - 1385 EP - 1411 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1385/ DO - 10.2140/agt.2019.19.1385 ID - 10_2140_agt_2019_19_1385 ER -
%0 Journal Article %A Uyanik, Caglar %T Hyperbolic extensions of free groups from atoroidal ping-pong %J Algebraic and Geometric Topology %D 2019 %P 1385-1411 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1385/ %R 10.2140/agt.2019.19.1385 %F 10_2140_agt_2019_19_1385
Uyanik, Caglar. Hyperbolic extensions of free groups from atoroidal ping-pong. Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1385-1411. doi: 10.2140/agt.2019.19.1385
Cité par Sources :