Occupants in simplicial complexes
Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1265-1298
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let M be a smooth manifold and K ⊂ M be a simplicial complex of codimension at least 3. Functor calculus methods lead to a homotopical formula of M ∖ K in terms of spaces M ∖ T where T is a finite subset of K. This is a generalization of the author’s previous work with Michael Weiss (Contemp. Math. 682, Amer. Math. Soc., Providence, RI (2017) 237–259), where the subset K is assumed to be a smooth submanifold of M and uses his generalization of manifold calculus adapted for simplicial complexes.
Classification :
57R19, 55P65
Keywords: calculus of functors, manifolds, simplicial complexes, complements
Keywords: calculus of functors, manifolds, simplicial complexes, complements
Affiliations des auteurs :
Tillmann, Steffen 1
@article{10_2140_agt_2019_19_1265,
author = {Tillmann, Steffen},
title = {Occupants in simplicial complexes},
journal = {Algebraic and Geometric Topology},
pages = {1265--1298},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2019},
doi = {10.2140/agt.2019.19.1265},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1265/}
}
Tillmann, Steffen. Occupants in simplicial complexes. Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1265-1298. doi: 10.2140/agt.2019.19.1265
Cité par Sources :