Commensurability invariance for abelian splittings of right-angled Artin groups, braid groups and loop braid groups
Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1247-1264

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that if a right-angled Artin group AΓ is abstractly commensurable to a group splitting nontrivially as an amalgam or HNN extension over ℤn, then AΓ must itself split nontrivially over ℤk for some k ≤ n. Consequently, if two right-angled Artin groups AΓ and AΔ are commensurable and Γ has no separating k–cliques for any k ≤ n, then neither does Δ, so “smallest size of separating clique” is a commensurability invariant. We also discuss some implications for issues of quasi-isometry. Using similar methods we also prove that for n ≥ 4 the braid group Bn is not abstractly commensurable to any group that splits nontrivially over a “free group–free” subgroup, and the same holds for n ≥ 3 for the loop braid group LBn. Our approach makes heavy use of the Bieri–Neumann–Strebel invariant.

DOI : 10.2140/agt.2019.19.1247
Classification : 20F65, 20F36, 57M07
Keywords: right-angled Artin group, braid group, loop braid group, BNS invariant, abstract commensurability

Zaremsky, Matthew 1

1 Department of Mathematics and Statistics, University at Albany (SUNY), Albany, NY, United States
@article{10_2140_agt_2019_19_1247,
     author = {Zaremsky, Matthew},
     title = {Commensurability invariance for abelian splittings of right-angled {Artin} groups, braid groups and loop braid groups},
     journal = {Algebraic and Geometric Topology},
     pages = {1247--1264},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2019},
     doi = {10.2140/agt.2019.19.1247},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1247/}
}
TY  - JOUR
AU  - Zaremsky, Matthew
TI  - Commensurability invariance for abelian splittings of right-angled Artin groups, braid groups and loop braid groups
JO  - Algebraic and Geometric Topology
PY  - 2019
SP  - 1247
EP  - 1264
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1247/
DO  - 10.2140/agt.2019.19.1247
ID  - 10_2140_agt_2019_19_1247
ER  - 
%0 Journal Article
%A Zaremsky, Matthew
%T Commensurability invariance for abelian splittings of right-angled Artin groups, braid groups and loop braid groups
%J Algebraic and Geometric Topology
%D 2019
%P 1247-1264
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1247/
%R 10.2140/agt.2019.19.1247
%F 10_2140_agt_2019_19_1247
Zaremsky, Matthew. Commensurability invariance for abelian splittings of right-angled Artin groups, braid groups and loop braid groups. Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1247-1264. doi: 10.2140/agt.2019.19.1247

Cité par Sources :