Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We start the inquiry into proving uniform exponential growth in the context of groups acting on CAT(0) cube complexes. We address free group actions on CAT(0) square complexes and prove a more general statement. This says that if F is a finite collection of hyperbolic automorphisms of a CAT(0) square complex X, then either there exists a pair of words of length at most 10 in F which freely generate a free semigroup, or all elements of F stabilize a flat (of dimension 1 or 2 in X). As a corollary, we obtain a lower bound for the growth constant, 210, which is uniform not just for a given group acting freely on a given CAT(0) cube complex, but for all groups which are not virtually abelian and have a free action on a CAT(0) square complex.
Keywords: uniform exponential growth, CAT(0) cubical groups
Kar, Aditi 1 ; Sageev, Michah 2
@article{10_2140_agt_2019_19_1229,
author = {Kar, Aditi and Sageev, Michah},
title = {Uniform exponential growth for {CAT(0)} square complexes},
journal = {Algebraic and Geometric Topology},
pages = {1229--1245},
publisher = {mathdoc},
volume = {19},
number = {3},
year = {2019},
doi = {10.2140/agt.2019.19.1229},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1229/}
}
TY - JOUR AU - Kar, Aditi AU - Sageev, Michah TI - Uniform exponential growth for CAT(0) square complexes JO - Algebraic and Geometric Topology PY - 2019 SP - 1229 EP - 1245 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1229/ DO - 10.2140/agt.2019.19.1229 ID - 10_2140_agt_2019_19_1229 ER -
%0 Journal Article %A Kar, Aditi %A Sageev, Michah %T Uniform exponential growth for CAT(0) square complexes %J Algebraic and Geometric Topology %D 2019 %P 1229-1245 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.1229/ %R 10.2140/agt.2019.19.1229 %F 10_2140_agt_2019_19_1229
Kar, Aditi; Sageev, Michah. Uniform exponential growth for CAT(0) square complexes. Algebraic and Geometric Topology, Tome 19 (2019) no. 3, pp. 1229-1245. doi: 10.2140/agt.2019.19.1229
Cité par Sources :