Dimensional reduction and the equivariant Chern character
Algebraic and Geometric Topology, Tome 19 (2019) no. 1, pp. 109-150
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We propose a dimensional reduction procedure for 1|1–dimensional supersymmetric euclidean field theories (EFTs) in the sense of Stolz and Teichner. Our construction is well suited in the presence of a finite gauge group or, more generally, for field theories over an orbifold. As an illustration, we give a geometric interpretation of the Chern character for manifolds with an action by a finite group.
Classification :
19L10, 19L47, 57R18, 57R56, 55N91, 58C50, 81T60
Keywords: dimensional reduction, topological quantum field theory, Chern character, supermanifolds
Keywords: dimensional reduction, topological quantum field theory, Chern character, supermanifolds
Affiliations des auteurs :
Stoffel, Augusto 1
@article{10_2140_agt_2019_19_109,
author = {Stoffel, Augusto},
title = {Dimensional reduction and the equivariant {Chern} character},
journal = {Algebraic and Geometric Topology},
pages = {109--150},
publisher = {mathdoc},
volume = {19},
number = {1},
year = {2019},
doi = {10.2140/agt.2019.19.109},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.109/}
}
TY - JOUR AU - Stoffel, Augusto TI - Dimensional reduction and the equivariant Chern character JO - Algebraic and Geometric Topology PY - 2019 SP - 109 EP - 150 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2019.19.109/ DO - 10.2140/agt.2019.19.109 ID - 10_2140_agt_2019_19_109 ER -
Stoffel, Augusto. Dimensional reduction and the equivariant Chern character. Algebraic and Geometric Topology, Tome 19 (2019) no. 1, pp. 109-150. doi: 10.2140/agt.2019.19.109
Cité par Sources :