Topologically slice knots that are not smoothly slice in any definite 4–manifold
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 827-837
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that there exist infinitely many topologically slice knots which cannot bound a smooth null-homologous disk in any definite 4–manifold. Furthermore, we show that we can take such knots so that they are linearly independent in the knot concordance group.
Classification :
57M25, 57M27
Keywords: knot concordance, 4-manifolds, Heegaard Floer homology
Keywords: knot concordance, 4-manifolds, Heegaard Floer homology
Affiliations des auteurs :
Sato, Kouki 1
@article{10_2140_agt_2018_18_827,
author = {Sato, Kouki},
title = {Topologically slice knots that are not smoothly slice in any definite 4{\textendash}manifold},
journal = {Algebraic and Geometric Topology},
pages = {827--837},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2018},
doi = {10.2140/agt.2018.18.827},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.827/}
}
TY - JOUR AU - Sato, Kouki TI - Topologically slice knots that are not smoothly slice in any definite 4–manifold JO - Algebraic and Geometric Topology PY - 2018 SP - 827 EP - 837 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.827/ DO - 10.2140/agt.2018.18.827 ID - 10_2140_agt_2018_18_827 ER -
%0 Journal Article %A Sato, Kouki %T Topologically slice knots that are not smoothly slice in any definite 4–manifold %J Algebraic and Geometric Topology %D 2018 %P 827-837 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.827/ %R 10.2140/agt.2018.18.827 %F 10_2140_agt_2018_18_827
Sato, Kouki. Topologically slice knots that are not smoothly slice in any definite 4–manifold. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 827-837. doi: 10.2140/agt.2018.18.827
Cité par Sources :