Topologically slice knots that are not smoothly slice in any definite 4–manifold
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 827-837

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that there exist infinitely many topologically slice knots which cannot bound a smooth null-homologous disk in any definite 4–manifold. Furthermore, we show that we can take such knots so that they are linearly independent in the knot concordance group.

DOI : 10.2140/agt.2018.18.827
Classification : 57M25, 57M27
Keywords: knot concordance, 4-manifolds, Heegaard Floer homology

Sato, Kouki 1

1 Department of Mathematics, Tokyo Institute of Technology, Meguro, Japan
@article{10_2140_agt_2018_18_827,
     author = {Sato, Kouki},
     title = {Topologically slice knots that are not smoothly slice in any definite 4{\textendash}manifold},
     journal = {Algebraic and Geometric Topology},
     pages = {827--837},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     doi = {10.2140/agt.2018.18.827},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.827/}
}
TY  - JOUR
AU  - Sato, Kouki
TI  - Topologically slice knots that are not smoothly slice in any definite 4–manifold
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 827
EP  - 837
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.827/
DO  - 10.2140/agt.2018.18.827
ID  - 10_2140_agt_2018_18_827
ER  - 
%0 Journal Article
%A Sato, Kouki
%T Topologically slice knots that are not smoothly slice in any definite 4–manifold
%J Algebraic and Geometric Topology
%D 2018
%P 827-837
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.827/
%R 10.2140/agt.2018.18.827
%F 10_2140_agt_2018_18_827
Sato, Kouki. Topologically slice knots that are not smoothly slice in any definite 4–manifold. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 827-837. doi: 10.2140/agt.2018.18.827

Cité par Sources :