A combinatorial description of topological complexity for finite spaces
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 779-796
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This paper presents a discrete analog of topological complexity for finite spaces using purely combinatorial terms. We demonstrate that this coincides with the genuine topological complexity of the original finite space. Furthermore, we study the relationship with simplicial complexity for simplicial complexes by taking the barycentric subdivision into account.
Classification :
55P10, 06A07
Keywords: topological complexity, finite space, order complex
Keywords: topological complexity, finite space, order complex
Affiliations des auteurs :
Tanaka, Kohei 1
@article{10_2140_agt_2018_18_779,
author = {Tanaka, Kohei},
title = {A combinatorial description of topological complexity for finite spaces},
journal = {Algebraic and Geometric Topology},
pages = {779--796},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2018},
doi = {10.2140/agt.2018.18.779},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.779/}
}
TY - JOUR AU - Tanaka, Kohei TI - A combinatorial description of topological complexity for finite spaces JO - Algebraic and Geometric Topology PY - 2018 SP - 779 EP - 796 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.779/ DO - 10.2140/agt.2018.18.779 ID - 10_2140_agt_2018_18_779 ER -
%0 Journal Article %A Tanaka, Kohei %T A combinatorial description of topological complexity for finite spaces %J Algebraic and Geometric Topology %D 2018 %P 779-796 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.779/ %R 10.2140/agt.2018.18.779 %F 10_2140_agt_2018_18_779
Tanaka, Kohei. A combinatorial description of topological complexity for finite spaces. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 779-796. doi: 10.2140/agt.2018.18.779
Cité par Sources :