A combinatorial description of topological complexity for finite spaces
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 779-796

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This paper presents a discrete analog of topological complexity for finite spaces using purely combinatorial terms. We demonstrate that this coincides with the genuine topological complexity of the original finite space. Furthermore, we study the relationship with simplicial complexity for simplicial complexes by taking the barycentric subdivision into account.

DOI : 10.2140/agt.2018.18.779
Classification : 55P10, 06A07
Keywords: topological complexity, finite space, order complex

Tanaka, Kohei 1

1 Institute of Social Sciences, School of Humanities and Social Sciences, Academic Assembly, Shinshu University, Matsumoto, Japan
@article{10_2140_agt_2018_18_779,
     author = {Tanaka, Kohei},
     title = {A combinatorial description of topological complexity for finite spaces},
     journal = {Algebraic and Geometric Topology},
     pages = {779--796},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     doi = {10.2140/agt.2018.18.779},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.779/}
}
TY  - JOUR
AU  - Tanaka, Kohei
TI  - A combinatorial description of topological complexity for finite spaces
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 779
EP  - 796
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.779/
DO  - 10.2140/agt.2018.18.779
ID  - 10_2140_agt_2018_18_779
ER  - 
%0 Journal Article
%A Tanaka, Kohei
%T A combinatorial description of topological complexity for finite spaces
%J Algebraic and Geometric Topology
%D 2018
%P 779-796
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.779/
%R 10.2140/agt.2018.18.779
%F 10_2140_agt_2018_18_779
Tanaka, Kohei. A combinatorial description of topological complexity for finite spaces. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 779-796. doi: 10.2140/agt.2018.18.779

Cité par Sources :