Identifying lens spaces in polynomial time
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 767-778

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that if a closed, oriented 3–manifold M is promised to be homeomorphic to a lens space L(n,k) with n and k unknown, then we can compute both n and  k in polynomial time in the size of the triangulation of M. The tricky part is the parameter  k. The idea of the algorithm is to calculate Reidemeister torsion using numerical analysis over the complex numbers, rather than working directly in a cyclotomic field.

DOI : 10.2140/agt.2018.18.767
Classification : 57M27, 65G30, 68Q15, 68W01
Keywords: 3–manifolds, lens spaces, Reidemeister torsion

Kuperberg, Greg 1

1 Department of Mathematics, University of California, Davis, CA, United States
@article{10_2140_agt_2018_18_767,
     author = {Kuperberg, Greg},
     title = {Identifying lens spaces in polynomial time},
     journal = {Algebraic and Geometric Topology},
     pages = {767--778},
     publisher = {mathdoc},
     volume = {18},
     number = {2},
     year = {2018},
     doi = {10.2140/agt.2018.18.767},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.767/}
}
TY  - JOUR
AU  - Kuperberg, Greg
TI  - Identifying lens spaces in polynomial time
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 767
EP  - 778
VL  - 18
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.767/
DO  - 10.2140/agt.2018.18.767
ID  - 10_2140_agt_2018_18_767
ER  - 
%0 Journal Article
%A Kuperberg, Greg
%T Identifying lens spaces in polynomial time
%J Algebraic and Geometric Topology
%D 2018
%P 767-778
%V 18
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.767/
%R 10.2140/agt.2018.18.767
%F 10_2140_agt_2018_18_767
Kuperberg, Greg. Identifying lens spaces in polynomial time. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 767-778. doi: 10.2140/agt.2018.18.767

Cité par Sources :