Identifying lens spaces in polynomial time
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 767-778
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that if a closed, oriented 3–manifold M is promised to be homeomorphic to a lens space L(n,k) with n and k unknown, then we can compute both n and k in polynomial time in the size of the triangulation of M. The tricky part is the parameter k. The idea of the algorithm is to calculate Reidemeister torsion using numerical analysis over the complex numbers, rather than working directly in a cyclotomic field.
Classification :
57M27, 65G30, 68Q15, 68W01
Keywords: 3–manifolds, lens spaces, Reidemeister torsion
Keywords: 3–manifolds, lens spaces, Reidemeister torsion
Affiliations des auteurs :
Kuperberg, Greg 1
@article{10_2140_agt_2018_18_767,
author = {Kuperberg, Greg},
title = {Identifying lens spaces in polynomial time},
journal = {Algebraic and Geometric Topology},
pages = {767--778},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2018},
doi = {10.2140/agt.2018.18.767},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.767/}
}
TY - JOUR AU - Kuperberg, Greg TI - Identifying lens spaces in polynomial time JO - Algebraic and Geometric Topology PY - 2018 SP - 767 EP - 778 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.767/ DO - 10.2140/agt.2018.18.767 ID - 10_2140_agt_2018_18_767 ER -
Kuperberg, Greg. Identifying lens spaces in polynomial time. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 767-778. doi: 10.2140/agt.2018.18.767
Cité par Sources :