Stable presentation length of 3–manifold groups
Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 687-722
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce the stable presentation length of a finitely presentable group. The stable presentation length of the fundamental group of a 3–manifold can be considered as an analogue of the simplicial volume. We show that, like the simplicial volume, the stable presentation length has some additive properties, and the simplicial volume of a closed 3–manifold is bounded from above and below by constant multiples of the stable presentation length of its fundamental group.
Classification :
57M05, 57M27, 57M10, 57M20
Keywords: presentations of groups, finite covers of 3-manifolds
Keywords: presentations of groups, finite covers of 3-manifolds
Affiliations des auteurs :
Yoshida, Ken’ichi 1
@article{10_2140_agt_2018_18_687,
author = {Yoshida, Ken{\textquoteright}ichi},
title = {Stable presentation length of 3{\textendash}manifold groups},
journal = {Algebraic and Geometric Topology},
pages = {687--722},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {2018},
doi = {10.2140/agt.2018.18.687},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.687/}
}
TY - JOUR AU - Yoshida, Ken’ichi TI - Stable presentation length of 3–manifold groups JO - Algebraic and Geometric Topology PY - 2018 SP - 687 EP - 722 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.687/ DO - 10.2140/agt.2018.18.687 ID - 10_2140_agt_2018_18_687 ER -
Yoshida, Ken’ichi. Stable presentation length of 3–manifold groups. Algebraic and Geometric Topology, Tome 18 (2018) no. 2, pp. 687-722. doi: 10.2140/agt.2018.18.687
Cité par Sources :