On periodic groups of homeomorphisms of the 2–dimensional sphere
Algebraic and Geometric Topology, Tome 18 (2018) no. 7, pp. 4093-4107
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that every finitely generated group of homeomorphisms of the 2–dimensional sphere all of whose elements have a finite order which is a power of 2 and is such that there exists a uniform bound for the orders of the group elements is finite. We prove a similar result for groups of area-preserving homeomorphisms without the hypothesis that the orders of group elements are powers of 2 provided there is an element of even order.
Classification :
20F50, 37B05, 37E30, 37E45, 57S25
Keywords: Burnside problem, surface homeomorphisms, $2$–sphere
Keywords: Burnside problem, surface homeomorphisms, $2$–sphere
Affiliations des auteurs :
Conejeros, Jonathan 1
@article{10_2140_agt_2018_18_4093,
author = {Conejeros, Jonathan},
title = {On periodic groups of homeomorphisms of the 2{\textendash}dimensional sphere},
journal = {Algebraic and Geometric Topology},
pages = {4093--4107},
publisher = {mathdoc},
volume = {18},
number = {7},
year = {2018},
doi = {10.2140/agt.2018.18.4093},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.4093/}
}
TY - JOUR AU - Conejeros, Jonathan TI - On periodic groups of homeomorphisms of the 2–dimensional sphere JO - Algebraic and Geometric Topology PY - 2018 SP - 4093 EP - 4107 VL - 18 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.4093/ DO - 10.2140/agt.2018.18.4093 ID - 10_2140_agt_2018_18_4093 ER -
%0 Journal Article %A Conejeros, Jonathan %T On periodic groups of homeomorphisms of the 2–dimensional sphere %J Algebraic and Geometric Topology %D 2018 %P 4093-4107 %V 18 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.4093/ %R 10.2140/agt.2018.18.4093 %F 10_2140_agt_2018_18_4093
Conejeros, Jonathan. On periodic groups of homeomorphisms of the 2–dimensional sphere. Algebraic and Geometric Topology, Tome 18 (2018) no. 7, pp. 4093-4107. doi: 10.2140/agt.2018.18.4093
Cité par Sources :