Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a spherical fibration ξ over the classifying space BG of a finite group G we define a dimension function for the m–fold fiber join of ξ, where m is some large positive integer. We show that the dimension functions satisfy the Borel–Smith conditions when m is large enough. As an application we prove that there exists no spherical fibration over the classifying space of Qd(p) = (ℤ∕p)2 ⋊ SL2(ℤ∕p) with p–effective Euler class, generalizing a result of Ünlü (2004) about group actions on finite complexes homotopy equivalent to a sphere. We have been informed that this result will also appear in upcoming work of Alejandro Adem and Jesper Grodal as a corollary of a previously announced program on homotopy group actions due to Grodal.
Keywords: group actions, Smith theory, spherical fibrations, Lannes' $T$–functor
Okay, Cihan 1 ; Yalçin, Ergün 2
@article{10_2140_agt_2018_18_3907,
author = {Okay, Cihan and Yal\c{c}in, Erg\"un},
title = {Dimension functions for spherical fibrations},
journal = {Algebraic and Geometric Topology},
pages = {3907--3941},
publisher = {mathdoc},
volume = {18},
number = {7},
year = {2018},
doi = {10.2140/agt.2018.18.3907},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3907/}
}
TY - JOUR AU - Okay, Cihan AU - Yalçin, Ergün TI - Dimension functions for spherical fibrations JO - Algebraic and Geometric Topology PY - 2018 SP - 3907 EP - 3941 VL - 18 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3907/ DO - 10.2140/agt.2018.18.3907 ID - 10_2140_agt_2018_18_3907 ER -
Okay, Cihan; Yalçin, Ergün. Dimension functions for spherical fibrations. Algebraic and Geometric Topology, Tome 18 (2018) no. 7, pp. 3907-3941. doi: 10.2140/agt.2018.18.3907
Cité par Sources :