Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The (untwisted) oriented cube of resolutions for knot Floer homology assigns a complex CF(S) to a singular resolution S of a knot K. Manolescu conjectured that when S is in braid position, the homology H∗(CF(S)) is isomorphic to the homfly-pt homology of S. Together with a naturality condition on the induced edge maps, this conjecture would prove the existence of a spectral sequence from homfly-pt homology to knot Floer homology. Using a basepoint filtration on CF(S), a recursion formula for homfly-pt homology and additional sln–like differentials on CF(S), we prove Manolescu’s conjecture. The naturality condition remains open.
Keywords: knot theory, knot Floer, Khovanov–Rozansky, HOMFLY-PT, homology
Dowlin, Nathan 1
@article{10_2140_agt_2018_18_3839,
     author = {Dowlin, Nathan},
     title = {Knot {Floer} homology and {Khovanov{\textendash}Rozansky} homology for singular links},
     journal = {Algebraic and Geometric Topology},
     pages = {3839--3885},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {2018},
     doi = {10.2140/agt.2018.18.3839},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3839/}
}
                      
                      
                    TY - JOUR AU - Dowlin, Nathan TI - Knot Floer homology and Khovanov–Rozansky homology for singular links JO - Algebraic and Geometric Topology PY - 2018 SP - 3839 EP - 3885 VL - 18 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3839/ DO - 10.2140/agt.2018.18.3839 ID - 10_2140_agt_2018_18_3839 ER -
%0 Journal Article %A Dowlin, Nathan %T Knot Floer homology and Khovanov–Rozansky homology for singular links %J Algebraic and Geometric Topology %D 2018 %P 3839-3885 %V 18 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3839/ %R 10.2140/agt.2018.18.3839 %F 10_2140_agt_2018_18_3839
Dowlin, Nathan. Knot Floer homology and Khovanov–Rozansky homology for singular links. Algebraic and Geometric Topology, Tome 18 (2018) no. 7, pp. 3839-3885. doi: 10.2140/agt.2018.18.3839
Cité par Sources :