Knot Floer homology and Khovanov–Rozansky homology for singular links
Algebraic and Geometric Topology, Tome 18 (2018) no. 7, pp. 3839-3885

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The (untwisted) oriented cube of resolutions for knot Floer homology assigns a complex CF(S) to a singular resolution S of a knot K. Manolescu conjectured that when S is in braid position, the homology H∗(CF(S)) is isomorphic to the homfly-pt homology of S. Together with a naturality condition on the induced edge maps, this conjecture would prove the existence of a spectral sequence from homfly-pt homology to knot Floer homology. Using a basepoint filtration on CF(S), a recursion formula for homfly-pt homology and additional sln–like differentials on CF(S), we prove Manolescu’s conjecture. The naturality condition remains open.

DOI : 10.2140/agt.2018.18.3839
Classification : 57M27
Keywords: knot theory, knot Floer, Khovanov–Rozansky, HOMFLY-PT, homology

Dowlin, Nathan 1

1 Department of Mathematics, Columbia University, New York, NY, United States
@article{10_2140_agt_2018_18_3839,
     author = {Dowlin, Nathan},
     title = {Knot {Floer} homology and {Khovanov{\textendash}Rozansky} homology for singular links},
     journal = {Algebraic and Geometric Topology},
     pages = {3839--3885},
     publisher = {mathdoc},
     volume = {18},
     number = {7},
     year = {2018},
     doi = {10.2140/agt.2018.18.3839},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3839/}
}
TY  - JOUR
AU  - Dowlin, Nathan
TI  - Knot Floer homology and Khovanov–Rozansky homology for singular links
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 3839
EP  - 3885
VL  - 18
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3839/
DO  - 10.2140/agt.2018.18.3839
ID  - 10_2140_agt_2018_18_3839
ER  - 
%0 Journal Article
%A Dowlin, Nathan
%T Knot Floer homology and Khovanov–Rozansky homology for singular links
%J Algebraic and Geometric Topology
%D 2018
%P 3839-3885
%V 18
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3839/
%R 10.2140/agt.2018.18.3839
%F 10_2140_agt_2018_18_3839
Dowlin, Nathan. Knot Floer homology and Khovanov–Rozansky homology for singular links. Algebraic and Geometric Topology, Tome 18 (2018) no. 7, pp. 3839-3885. doi: 10.2140/agt.2018.18.3839

Cité par Sources :