A signature invariant for knotted Klein graphs
Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3719-3747
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We define some signature invariants for a class of knotted trivalent graphs using branched covers. We relate them to classical signatures of knots and links. Finally, we explain how to compute these invariants through the example of Kinoshita’s knotted theta graph.
Classification :
05C10, 57M12, 57M15, 57M25, 57M27
Keywords: knotted trivalent graphs, branched covering, signature invariants
Keywords: knotted trivalent graphs, branched covering, signature invariants
Affiliations des auteurs :
Gille, Catherine 1 ; Robert, Louis-Hadrien 2
@article{10_2140_agt_2018_18_3719,
author = {Gille, Catherine and Robert, Louis-Hadrien},
title = {A signature invariant for knotted {Klein} graphs},
journal = {Algebraic and Geometric Topology},
pages = {3719--3747},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {2018},
doi = {10.2140/agt.2018.18.3719},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3719/}
}
TY - JOUR AU - Gille, Catherine AU - Robert, Louis-Hadrien TI - A signature invariant for knotted Klein graphs JO - Algebraic and Geometric Topology PY - 2018 SP - 3719 EP - 3747 VL - 18 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3719/ DO - 10.2140/agt.2018.18.3719 ID - 10_2140_agt_2018_18_3719 ER -
%0 Journal Article %A Gille, Catherine %A Robert, Louis-Hadrien %T A signature invariant for knotted Klein graphs %J Algebraic and Geometric Topology %D 2018 %P 3719-3747 %V 18 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3719/ %R 10.2140/agt.2018.18.3719 %F 10_2140_agt_2018_18_3719
Gille, Catherine; Robert, Louis-Hadrien. A signature invariant for knotted Klein graphs. Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3719-3747. doi: 10.2140/agt.2018.18.3719
Cité par Sources :