A signature invariant for knotted Klein graphs
Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3719-3747

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We define some signature invariants for a class of knotted trivalent graphs using branched covers. We relate them to classical signatures of knots and links. Finally, we explain how to compute these invariants through the example of Kinoshita’s knotted theta graph.

DOI : 10.2140/agt.2018.18.3719
Classification : 05C10, 57M12, 57M15, 57M25, 57M27
Keywords: knotted trivalent graphs, branched covering, signature invariants

Gille, Catherine 1 ; Robert, Louis-Hadrien 2

1 Institut de Mathématiques de Jussieu-Paris Rive Gauche, CNRS, Sorbonne Université, Université Paris Diderot, Paris, France
2 Section de Mathématiques, Université de Genève, Genève, Switzerland
@article{10_2140_agt_2018_18_3719,
     author = {Gille, Catherine and Robert, Louis-Hadrien},
     title = {A signature invariant for knotted {Klein} graphs},
     journal = {Algebraic and Geometric Topology},
     pages = {3719--3747},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2018},
     doi = {10.2140/agt.2018.18.3719},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3719/}
}
TY  - JOUR
AU  - Gille, Catherine
AU  - Robert, Louis-Hadrien
TI  - A signature invariant for knotted Klein graphs
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 3719
EP  - 3747
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3719/
DO  - 10.2140/agt.2018.18.3719
ID  - 10_2140_agt_2018_18_3719
ER  - 
%0 Journal Article
%A Gille, Catherine
%A Robert, Louis-Hadrien
%T A signature invariant for knotted Klein graphs
%J Algebraic and Geometric Topology
%D 2018
%P 3719-3747
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3719/
%R 10.2140/agt.2018.18.3719
%F 10_2140_agt_2018_18_3719
Gille, Catherine; Robert, Louis-Hadrien. A signature invariant for knotted Klein graphs. Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3719-3747. doi: 10.2140/agt.2018.18.3719

Cité par Sources :