Symmetric chain complexes, twisted Blanchfield pairings and knot concordance
Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3425-3476

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a formula for the duality structure of the 3–manifold obtained by doing zero-framed surgery along a knot in the 3–sphere, starting from a diagram of the knot. We then use this to give a combinatorial algorithm for computing the twisted Blanchfield pairing of such 3–manifolds. With the twisting defined by Casson–Gordon-style representations, we use our computation of the twisted Blanchfield pairing to show that some subtle satellites of genus two ribbon knots yield nonslice knots. The construction is subtle in the sense that, once based, the infection curve lies in the second derived subgroup of the knot group.

DOI : 10.2140/agt.2018.18.3425
Classification : 57M25, 57M27, 57N70
Keywords: twisted Blanchfield pairing, symmetric Poincaré chain complex, knot concordance

Miller, Allison 1 ; Powell, Mark 2

1 Department of Mathematics, University of Texas at Austin, Austin, TX, United States, Department of Mathematics, Rice University, Houston, TX, United States
2 Department of Mathematical Sciences, Durham University, Durham, United Kingdom
@article{10_2140_agt_2018_18_3425,
     author = {Miller, Allison and Powell, Mark},
     title = {Symmetric chain complexes, twisted {Blanchfield} pairings and knot concordance},
     journal = {Algebraic and Geometric Topology},
     pages = {3425--3476},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2018},
     doi = {10.2140/agt.2018.18.3425},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3425/}
}
TY  - JOUR
AU  - Miller, Allison
AU  - Powell, Mark
TI  - Symmetric chain complexes, twisted Blanchfield pairings and knot concordance
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 3425
EP  - 3476
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3425/
DO  - 10.2140/agt.2018.18.3425
ID  - 10_2140_agt_2018_18_3425
ER  - 
%0 Journal Article
%A Miller, Allison
%A Powell, Mark
%T Symmetric chain complexes, twisted Blanchfield pairings and knot concordance
%J Algebraic and Geometric Topology
%D 2018
%P 3425-3476
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3425/
%R 10.2140/agt.2018.18.3425
%F 10_2140_agt_2018_18_3425
Miller, Allison; Powell, Mark. Symmetric chain complexes, twisted Blanchfield pairings and knot concordance. Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3425-3476. doi: 10.2140/agt.2018.18.3425

Cité par Sources :