A∞–resolutions and the Golod property for monomial rings
Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3403-3424
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let R = S∕I be a monomial ring whose minimal free resolution F is rooted. We describe an A∞ –algebra structure on F. Using this structure, we show that R is Golod if and only if the product on TorS(R,k) vanishes. Furthermore, we give a necessary and sufficient combinatorial condition for R to be Golod.
Classification :
13D07, 13D40, 16E45, 55S30
Keywords: Golod ring, Poincaré series, A-infinity algebra, Massey products
Keywords: Golod ring, Poincaré series, A-infinity algebra, Massey products
Affiliations des auteurs :
Frankhuizen, Robin 1
@article{10_2140_agt_2018_18_3403,
author = {Frankhuizen, Robin},
title = {A\ensuremath{\infty}{\textendash}resolutions and the {Golod} property for monomial rings},
journal = {Algebraic and Geometric Topology},
pages = {3403--3424},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {2018},
doi = {10.2140/agt.2018.18.3403},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3403/}
}
TY - JOUR AU - Frankhuizen, Robin TI - A∞–resolutions and the Golod property for monomial rings JO - Algebraic and Geometric Topology PY - 2018 SP - 3403 EP - 3424 VL - 18 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3403/ DO - 10.2140/agt.2018.18.3403 ID - 10_2140_agt_2018_18_3403 ER -
%0 Journal Article %A Frankhuizen, Robin %T A∞–resolutions and the Golod property for monomial rings %J Algebraic and Geometric Topology %D 2018 %P 3403-3424 %V 18 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3403/ %R 10.2140/agt.2018.18.3403 %F 10_2140_agt_2018_18_3403
Frankhuizen, Robin. A∞–resolutions and the Golod property for monomial rings. Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3403-3424. doi: 10.2140/agt.2018.18.3403
Cité par Sources :