Alternating links have representativity 2
Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3339-3362

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that if L is a nontrivial alternating link embedded (without crossings) in a closed surface F ⊂ S3, then F has a compressing disk whose boundary intersects L in no more than two points. Moreover, whenever the surface is incompressible and ∂–incompressible in the link exterior, it can be isotoped to have a standard tube at some crossing of any reduced alternating diagram.

DOI : 10.2140/agt.2018.18.3339
Classification : 57M25, 57M50
Keywords: alternating knot, alternating link, representativity, closed surface, compressing disk

Kindred, Thomas 1

1 Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE, United States
@article{10_2140_agt_2018_18_3339,
     author = {Kindred, Thomas},
     title = {Alternating links have representativity 2},
     journal = {Algebraic and Geometric Topology},
     pages = {3339--3362},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2018},
     doi = {10.2140/agt.2018.18.3339},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3339/}
}
TY  - JOUR
AU  - Kindred, Thomas
TI  - Alternating links have representativity 2
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 3339
EP  - 3362
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3339/
DO  - 10.2140/agt.2018.18.3339
ID  - 10_2140_agt_2018_18_3339
ER  - 
%0 Journal Article
%A Kindred, Thomas
%T Alternating links have representativity 2
%J Algebraic and Geometric Topology
%D 2018
%P 3339-3362
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3339/
%R 10.2140/agt.2018.18.3339
%F 10_2140_agt_2018_18_3339
Kindred, Thomas. Alternating links have representativity 2. Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3339-3362. doi: 10.2140/agt.2018.18.3339

Cité par Sources :