Alternating links have representativity 2
Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3339-3362
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that if L is a nontrivial alternating link embedded (without crossings) in a closed surface F ⊂ S3, then F has a compressing disk whose boundary intersects L in no more than two points. Moreover, whenever the surface is incompressible and ∂–incompressible in the link exterior, it can be isotoped to have a standard tube at some crossing of any reduced alternating diagram.
Classification :
57M25, 57M50
Keywords: alternating knot, alternating link, representativity, closed surface, compressing disk
Keywords: alternating knot, alternating link, representativity, closed surface, compressing disk
Affiliations des auteurs :
Kindred, Thomas 1
@article{10_2140_agt_2018_18_3339,
author = {Kindred, Thomas},
title = {Alternating links have representativity 2},
journal = {Algebraic and Geometric Topology},
pages = {3339--3362},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {2018},
doi = {10.2140/agt.2018.18.3339},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3339/}
}
TY - JOUR AU - Kindred, Thomas TI - Alternating links have representativity 2 JO - Algebraic and Geometric Topology PY - 2018 SP - 3339 EP - 3362 VL - 18 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3339/ DO - 10.2140/agt.2018.18.3339 ID - 10_2140_agt_2018_18_3339 ER -
Kindred, Thomas. Alternating links have representativity 2. Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3339-3362. doi: 10.2140/agt.2018.18.3339
Cité par Sources :