Action dimension of lattices in Euclidean buildings
Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3257-3277
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that if a discrete group Γ acts properly and cocompactly on an n–dimensional, thick, Euclidean building, then Γ cannot act properly on a contractible (2n−1)–manifold. As an application, if Γ is a torsion-free S–arithmetic group over a number field, we compute the minimal dimension of contractible manifold that admits a proper Γ–action. This partially answers a question of Bestvina, Kapovich, and Kleiner.
Classification :
20F36, 20F65, 20F55, 57Q35, 20J06
Keywords: action dimension, Euclidean building, S-arithmetic group, van Kampen obstruction
Keywords: action dimension, Euclidean building, S-arithmetic group, van Kampen obstruction
Affiliations des auteurs :
Schreve, Kevin 1
@article{10_2140_agt_2018_18_3257,
author = {Schreve, Kevin},
title = {Action dimension of lattices in {Euclidean} buildings},
journal = {Algebraic and Geometric Topology},
pages = {3257--3277},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {2018},
doi = {10.2140/agt.2018.18.3257},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3257/}
}
TY - JOUR AU - Schreve, Kevin TI - Action dimension of lattices in Euclidean buildings JO - Algebraic and Geometric Topology PY - 2018 SP - 3257 EP - 3277 VL - 18 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3257/ DO - 10.2140/agt.2018.18.3257 ID - 10_2140_agt_2018_18_3257 ER -
Schreve, Kevin. Action dimension of lattices in Euclidean buildings. Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3257-3277. doi: 10.2140/agt.2018.18.3257
Cité par Sources :