Algebraic stability of zigzag persistence modules
Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3133-3204

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The stability theorem for persistent homology is a central result in topological data analysis. While the original formulation of the result concerns the persistence barcodes of ℝ–valued functions, the result was later cast in a more general algebraic form, in the language of persistence modules and interleavings. We establish an analogue of this algebraic stability theorem for zigzag persistence modules. To do so, we functorially extend each zigzag persistence module to a two-dimensional persistence module, and establish an algebraic stability theorem for these extensions. One part of our argument yields a stability result for free two-dimensional persistence modules. As an application of our main theorem, we strengthen a result of Bauer et al on the stability of the persistent homology of Reeb graphs. Our main result also yields an alternative proof of the stability theorem for level set persistent homology of Carlsson et al.

DOI : 10.2140/agt.2018.18.3133
Classification : 55N35, 55U99
Keywords: topological data analysis, persistent homology, interleavings

Botnan, Magnus 1 ; Lesnick, Michael 2

1 Zentrum Mathematik, Technische Universität München, Garching bei München, Germany
2 Princeton Neuroscience Institute, Princeton University, Princeton, NJ, United States
@article{10_2140_agt_2018_18_3133,
     author = {Botnan, Magnus and Lesnick, Michael},
     title = {Algebraic stability of zigzag persistence modules},
     journal = {Algebraic and Geometric Topology},
     pages = {3133--3204},
     publisher = {mathdoc},
     volume = {18},
     number = {6},
     year = {2018},
     doi = {10.2140/agt.2018.18.3133},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3133/}
}
TY  - JOUR
AU  - Botnan, Magnus
AU  - Lesnick, Michael
TI  - Algebraic stability of zigzag persistence modules
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 3133
EP  - 3204
VL  - 18
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3133/
DO  - 10.2140/agt.2018.18.3133
ID  - 10_2140_agt_2018_18_3133
ER  - 
%0 Journal Article
%A Botnan, Magnus
%A Lesnick, Michael
%T Algebraic stability of zigzag persistence modules
%J Algebraic and Geometric Topology
%D 2018
%P 3133-3204
%V 18
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3133/
%R 10.2140/agt.2018.18.3133
%F 10_2140_agt_2018_18_3133
Botnan, Magnus; Lesnick, Michael. Algebraic stability of zigzag persistence modules. Algebraic and Geometric Topology, Tome 18 (2018) no. 6, pp. 3133-3204. doi: 10.2140/agt.2018.18.3133

Cité par Sources :