The profinite completions of knot groups determine the Alexander polynomials
Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 3013-3030
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We study several properties of the completed group ring ℤ ̂[[tℤ ̂]] and the completed Alexander modules of knots. Then we prove that if the profinite completions of the groups of two knots J and K are isomorphic, then their Alexander polynomials ΔJ(t) and ΔK(t) coincide.
Classification :
57M27, 20E18, 20E26, 57M12
Keywords: profinite completion, profinite group ring, knot, branched covering
Keywords: profinite completion, profinite group ring, knot, branched covering
Affiliations des auteurs :
Ueki, Jun 1
@article{10_2140_agt_2018_18_3013,
author = {Ueki, Jun},
title = {The profinite completions of knot groups determine the {Alexander} polynomials},
journal = {Algebraic and Geometric Topology},
pages = {3013--3030},
publisher = {mathdoc},
volume = {18},
number = {5},
year = {2018},
doi = {10.2140/agt.2018.18.3013},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3013/}
}
TY - JOUR AU - Ueki, Jun TI - The profinite completions of knot groups determine the Alexander polynomials JO - Algebraic and Geometric Topology PY - 2018 SP - 3013 EP - 3030 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3013/ DO - 10.2140/agt.2018.18.3013 ID - 10_2140_agt_2018_18_3013 ER -
%0 Journal Article %A Ueki, Jun %T The profinite completions of knot groups determine the Alexander polynomials %J Algebraic and Geometric Topology %D 2018 %P 3013-3030 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.3013/ %R 10.2140/agt.2018.18.3013 %F 10_2140_agt_2018_18_3013
Ueki, Jun. The profinite completions of knot groups determine the Alexander polynomials. Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 3013-3030. doi: 10.2140/agt.2018.18.3013
Cité par Sources :