On the commutative algebra of categories
Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 2963-3012

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We discuss what it means for a symmetric monoidal category to be a module over a commutative semiring category. Each of the categories of (1) cartesian monoidal categories, (2) semiadditive categories, and (3) connective spectra can be recovered in this way as categories of modules over a commutative semiring category (or ∞–category in the last case). This language provides a simultaneous generalization of the formalism of algebraic theories (operads, PROPs, Lawvere theories) and stable homotopy theory, with essentially a variant of algebraic K–theory bridging between the two.

DOI : 10.2140/agt.2018.18.2963
Classification : 18C10, 55U40, 13C60, 19D23
Keywords: higher algebra, Lawvere theory, operad

Berman, John 1

1 Department of Mathematics, University of Virginia, Charlottesville, VA, United States
@article{10_2140_agt_2018_18_2963,
     author = {Berman, John},
     title = {On the commutative algebra of categories},
     journal = {Algebraic and Geometric Topology},
     pages = {2963--3012},
     publisher = {mathdoc},
     volume = {18},
     number = {5},
     year = {2018},
     doi = {10.2140/agt.2018.18.2963},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2963/}
}
TY  - JOUR
AU  - Berman, John
TI  - On the commutative algebra of categories
JO  - Algebraic and Geometric Topology
PY  - 2018
SP  - 2963
EP  - 3012
VL  - 18
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2963/
DO  - 10.2140/agt.2018.18.2963
ID  - 10_2140_agt_2018_18_2963
ER  - 
%0 Journal Article
%A Berman, John
%T On the commutative algebra of categories
%J Algebraic and Geometric Topology
%D 2018
%P 2963-3012
%V 18
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2963/
%R 10.2140/agt.2018.18.2963
%F 10_2140_agt_2018_18_2963
Berman, John. On the commutative algebra of categories. Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 2963-3012. doi: 10.2140/agt.2018.18.2963

Cité par Sources :