Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We discuss what it means for a symmetric monoidal category to be a module over a commutative semiring category. Each of the categories of (1) cartesian monoidal categories, (2) semiadditive categories, and (3) connective spectra can be recovered in this way as categories of modules over a commutative semiring category (or ∞–category in the last case). This language provides a simultaneous generalization of the formalism of algebraic theories (operads, PROPs, Lawvere theories) and stable homotopy theory, with essentially a variant of algebraic K–theory bridging between the two.
Keywords: higher algebra, Lawvere theory, operad
Berman, John 1
@article{10_2140_agt_2018_18_2963,
author = {Berman, John},
title = {On the commutative algebra of categories},
journal = {Algebraic and Geometric Topology},
pages = {2963--3012},
publisher = {mathdoc},
volume = {18},
number = {5},
year = {2018},
doi = {10.2140/agt.2018.18.2963},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2963/}
}
TY - JOUR AU - Berman, John TI - On the commutative algebra of categories JO - Algebraic and Geometric Topology PY - 2018 SP - 2963 EP - 3012 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2963/ DO - 10.2140/agt.2018.18.2963 ID - 10_2140_agt_2018_18_2963 ER -
Berman, John. On the commutative algebra of categories. Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 2963-3012. doi: 10.2140/agt.2018.18.2963
Cité par Sources :