Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a conjecture of Blumberg and Hill regarding the existence of N∞–operads associated to given sequences ℱ = (ℱn)n∈ℕ of families of subgroups of G × Σn. For every such sequence, we construct a model structure on the category of G–operads, and we use these model structures to define E∞ℱ–operads, generalizing the notion of an N∞–operad, and to prove the Blumberg–Hill conjecture. We then explore questions of admissibility, rectification, and preservation under left Bousfield localization for these E∞ℱ–operads, obtaining some new results as well for N∞–operads.
Keywords: model category, homotopy category, equivariant homotopy theory, equivariant spectra, operads
Gutiérrez, Javier J 1 ; White, David 2
@article{10_2140_agt_2018_18_2919,
author = {Guti\'errez, Javier J and White, David},
title = {Encoding equivariant commutativity via operads},
journal = {Algebraic and Geometric Topology},
pages = {2919--2962},
publisher = {mathdoc},
volume = {18},
number = {5},
year = {2018},
doi = {10.2140/agt.2018.18.2919},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2919/}
}
TY - JOUR AU - Gutiérrez, Javier J AU - White, David TI - Encoding equivariant commutativity via operads JO - Algebraic and Geometric Topology PY - 2018 SP - 2919 EP - 2962 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2919/ DO - 10.2140/agt.2018.18.2919 ID - 10_2140_agt_2018_18_2919 ER -
%0 Journal Article %A Gutiérrez, Javier J %A White, David %T Encoding equivariant commutativity via operads %J Algebraic and Geometric Topology %D 2018 %P 2919-2962 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2919/ %R 10.2140/agt.2018.18.2919 %F 10_2140_agt_2018_18_2919
Gutiérrez, Javier J; White, David. Encoding equivariant commutativity via operads. Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 2919-2962. doi: 10.2140/agt.2018.18.2919
Cité par Sources :