Modulo 2 counting of Klein-bottle leaves in smooth taut foliations
Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 2701-2727
Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove a modulo 2 invariance for the number of Klein-bottle leaves in taut foliations. Given two smooth cooriented taut foliations, assume that every Klein-bottle leaf has nontrivial linear holonomy, and assume that the two foliations can be smoothly deformed to each other through taut foliations. We prove that the numbers of Klein-bottle leaves in these two foliations must have the same parity.
Classification :
57M50, 57R30, 57R57
Keywords: taut foliations, $J$–holomorphic curves
Keywords: taut foliations, $J$–holomorphic curves
Affiliations des auteurs :
Zhang, Boyu 1
@article{10_2140_agt_2018_18_2701,
author = {Zhang, Boyu},
title = {Modulo 2 counting of {Klein-bottle} leaves in smooth taut foliations},
journal = {Algebraic and Geometric Topology},
pages = {2701--2727},
publisher = {mathdoc},
volume = {18},
number = {5},
year = {2018},
doi = {10.2140/agt.2018.18.2701},
url = {http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2701/}
}
TY - JOUR AU - Zhang, Boyu TI - Modulo 2 counting of Klein-bottle leaves in smooth taut foliations JO - Algebraic and Geometric Topology PY - 2018 SP - 2701 EP - 2727 VL - 18 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2701/ DO - 10.2140/agt.2018.18.2701 ID - 10_2140_agt_2018_18_2701 ER -
%0 Journal Article %A Zhang, Boyu %T Modulo 2 counting of Klein-bottle leaves in smooth taut foliations %J Algebraic and Geometric Topology %D 2018 %P 2701-2727 %V 18 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/agt.2018.18.2701/ %R 10.2140/agt.2018.18.2701 %F 10_2140_agt_2018_18_2701
Zhang, Boyu. Modulo 2 counting of Klein-bottle leaves in smooth taut foliations. Algebraic and Geometric Topology, Tome 18 (2018) no. 5, pp. 2701-2727. doi: 10.2140/agt.2018.18.2701
Cité par Sources :